Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression

Gabriel Arpino, Ramji Venkataramanan
October 3rd, 2023

High－Dimensionality

$$
\begin{aligned}
& \text { 옹웅 } \\
& \text { 운呈 } \\
& \text { 呈呈品 } \\
& \text { (} 0,0,0 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 옹운 } \\
& \text { 운 } \\
& \text { 虽呈京 } \\
& (0,0,0)
\end{aligned}
$$

Heterogeneity

$$
\begin{aligned}
& \text { 呈品 } \\
& \text { 온 } \\
& \text { 吴㗔 } \\
& \text { (0,0,0) }
\end{aligned}
$$

Q: minimal information and computation to recover?

Ex: Communications [S98], Graphical Models [SW09], Regression [MM18], ...

Ex: Communications [S98], Graphical Models [SW09], Regression [MM18], ...

Ex: Communications [S98], Graphical Models [SW09], Regression [MM18], ...

Ex: Communications [S98], Graphical Models [SW09], Regression [MM18], ...

Ex: Sparse PCA [BR13], Group Testing [CGHWZ22], Sparse Linear Regression [GZ22], ...

Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]

Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]

Average Case Reductions [BB20, BR13, ...]

Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]
Average Case Reductions [BB20, BR13, ...]
Statistical Physics [DKMZ11, GMZ22, ...]

Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]

Average Case Reductions [BB20, BR13, ...]
Statistical Physics [DKMZ11, GMZ22, ...]

Low-Degree Conjecture [H18]:

Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]

Average Case Reductions [BB20, BR13, ...]
Statistical Physics [DKMZ11, GMZ22, ...]

Low-Degree Conjecture [H18]: polynomials of degree \log (dimension) w.r.t input

Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]

Average Case Reductions [BB20, BR13, ...]
Statistical Physics [DKMZ11, GMZ22, ...]

Low-Degree Conjecture [H18]: polynomials of degree \log (dimension) w.r.t input
\Longleftrightarrow poly-time algorithms

Mixed Sparse Linear Regression (MSLR)
Bad News

Good News

Proof

Mixed Linear Regression

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Mixed Linear Regression

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

- n observations $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[\mathrm{n}]}$

Mixed Linear Regression

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

- n observations $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[\mathrm{n}]}$
- $x_{i} \in \mathbb{R}^{p}$ covariates

Mixed Linear Regression

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

- n observations $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[\mathrm{n}]}$
- $x_{i} \in \mathbb{R}^{p}$ covariates
- $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \in \mathbb{R}^{p}$

Mixed Linear Regression

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

- n observations $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[\mathrm{n}]}$
- $x_{i} \in \mathbb{R}^{p}$ covariates
- $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \in \mathbb{R}^{p}$
- $w_{i} \in \mathbb{R}$ noise

Mixed Linear Regression

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

- n observations $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[\mathrm{n}]}$
- $x_{i} \in \mathbb{R}^{p}$ covariates
- $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \in \mathbb{R}^{p}$
- $w_{i} \in \mathbb{R}$ noise

Goal: Recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ w.h.p as $p \rightarrow \infty$, given only $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[n]}$

Applications: Health Care [IHHM'22], Music Perception [VT'02], Market Segmentation [WK'00], ...

Model Assumptions

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Model Assumptions

$$
\left.\begin{array}{l}
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i},
\end{array} \text { with indep. prob. } 1-\phi\right.
\end{array}\right\} \begin{aligned}
& \circ \mathrm{n} \ll p
\end{aligned}
$$

Model Assumptions

$$
\left.\begin{array}{l}
y_{i}=\left\{\begin{array}{rr}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, & \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i},
\end{array} \text { with indep. prob. } 1-\phi\right.
\end{array}\right\} \begin{aligned}
& \circ \mathrm{n} \ll p \\
& \circ \boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)
\end{aligned}
$$

Model Assumptions

$$
\left.\left.\begin{array}{l}
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i},
\end{array} \text { with indep. prob. } 1-\phi\right.
\end{array}\right\} \begin{array}{l}
\circ \mathrm{n} \ll p
\end{array}\right\} \quad \boldsymbol{x}_{i} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right),
$$

Model Assumptions

$$
\left.\begin{array}{l}
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i},
\end{array} \text { with indep. prob. } 1-\phi\right.
\end{array}\right\} \begin{aligned}
& \circ \mathrm{n} \ll p \\
& \circ \boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right) \\
& \circ w_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
& \circ\left\|\boldsymbol{\beta}_{1}\right\|_{0}=\left\|\boldsymbol{\beta}_{2}\right\|_{0}=k \ll p
\end{aligned}
$$

Model Assumptions

$$
\left.\begin{array}{l}
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i},
\end{array} \text { with indep. prob. } 1-\phi\right.
\end{array}\right\} \begin{aligned}
& \circ \mathrm{n} \ll p \\
& \circ \boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right) \\
& \circ w_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
& \circ\left\|\boldsymbol{\beta}_{1}\right\|_{0}=\left\|\boldsymbol{\beta}_{2}\right\|_{0}=k \ll p \\
& \circ\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}=\left\|\boldsymbol{\beta}_{2}\right\|_{2}^{2}=\Theta(k)
\end{aligned}
$$

Model Assumptions

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

- $\mathrm{n} \ll p$
- $\boldsymbol{x}_{i} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$
- $w_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
- $\left\|\boldsymbol{\beta}_{1}\right\|_{0}=\left\|\boldsymbol{\beta}_{2}\right\|_{0}=k \ll p$
- $\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}=\left\|\boldsymbol{\beta}_{2}\right\|_{2}^{2}=\Theta(k)$
- SNR $=\frac{\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}}{\sigma^{2}}$

Literature

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Literature

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Max. likelihood is non-convex, NP-Hard [YCS'14]

Literature

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Max. likelihood is non-convex, NP-Hard [YCS'14]
AM (noiseless), AMP (proportional regime), . . [YCS'14], [TV'23]

Literature

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Max. likelihood is non-convex, NP-Hard [YCS'14]
AM (noiseless), AMP (proportional regime), . . [[YCS' 14], [TV'23]
Best: ℓ_{1}-penalization +EM needs $\mathrm{n}=\tilde{\Omega}\left(k^{2}\right)$ [SBG' 10], [MP'22]

Literature

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Max. likelihood is non-convex, NP-Hard [YCS'14]
AM (noiseless), AMP (proportional regime), . . [[YCS' 14], [TV'23]
Best: ℓ_{1}-penalization +EM needs $\mathrm{n}=\tilde{\Omega}\left(k^{2}\right)$ [SBG' 10$]$, [MP'22]
Linear Regression needs just $\mathrm{n}=\tilde{\Omega}(k)$ [RXZ'19], [GZ'22]

Mixed Sparse Linear Regression

Extreme Cases

$$
y_{i}=\left\{\begin{array}{lr}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, & \text { with prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, & \text { with prob. } 1-\phi
\end{array}\right.
$$

Extreme Cases

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \\
\text { with prob. } 1-\phi
\end{array}\right.
$$

- $\phi=1$: Linear Regression

$$
y_{i}=\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}
$$

Extreme Cases

$$
y_{i}=\left\{\begin{array}{lr}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, & \text { with prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, & \text { with prob. } 1-\phi
\end{array}\right.
$$

- $\phi=1$: Linear Regression

$$
y_{i}=\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}
$$

- $\boldsymbol{\beta}_{1}=-\boldsymbol{\beta}_{2}, \phi=1 / 2$: Symmetric Mixed Linear Regression

$$
y_{i}= \begin{cases}\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2 \\ -\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. 1/2 }\end{cases}
$$

Main Results: Bad News

Theorem. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, analytic polynomials of degree less than $\frac{k^{2}}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.

Main Results: Bad News

Theorem. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, analytic polynomials of degree less than $\frac{k^{2}}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.
\Downarrow
Low-Degree Conjecture [H18] + Reduction to Recovery \Downarrow

Main Results: Bad News

Theorem. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, analytic polynomials of degree less than $\frac{k^{2}}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.
\Downarrow
Low-Degree Conjecture [H18] + Reduction to Recovery \Downarrow

Corollary. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Symmetric Mixed Linear Regression.

Main Results: Bad News

Theorem. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, analytic polynomials of degree less than $\frac{k^{2}}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.
\Downarrow
Low-Degree Conjecture [H18] + Reduction to Recovery \Downarrow

Corollary. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Symmetric Mixed Linear Regression.

This runtime is super-polynomial in the input!

Mixed Sparse Linear Regression

Mixed Sparse Linear Regression

Smooth Tradeoff

Corollary. For $k=o(\sqrt{p})$ and $k \ll n \ll k^{2}$, any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Mixed Sparse Linear Regression.

Smooth Tradeoff

Corollary. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Mixed Sparse Linear Regression.
\uparrow Sample size $\mathrm{n} \stackrel{\text { Low-Degree Conjecture [H'18] }}{ } \downarrow$ Runtime $\exp \left(\frac{k^{2}}{\mathrm{n}}\right)$

Smooth Tradeoff

Corollary. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Mixed Sparse Linear Regression.
\uparrow Sample size $\mathrm{n} \stackrel{\text { Low-Degree Conjecture [H'18] }}{ } \downarrow$ Runtime $\exp \left(\frac{\mathrm{k}^{2}}{\mathrm{n}}\right)$

Reminiscent of Sparse PCA [DKWB22]:

Smooth Tradeoff

Corollary. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$, any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Mixed Sparse Linear Regression.
\uparrow Sample size $\mathrm{n} \stackrel{\text { Low-Degree Conjecture [H'18] }}{\Longleftrightarrow} \downarrow$ Runtime $\exp \left(\frac{\mathrm{k}^{2}}{\mathrm{n}}\right)$

Reminiscent of Sparse PCA [DKWB22]:
Recover k-sparse \boldsymbol{x} from $y_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}+\beta \boldsymbol{x}^{\top}\right), \quad \frac{\mathrm{n}}{p}=\Theta(1)$

Smooth Tradeoff

Corollary. For $k=o(\sqrt{p})$ and $k \ll \mathrm{n} \ll k^{2}$,
any randomized algorithm requires runtime $\exp \left(\tilde{\Omega}\left(\frac{k^{2}}{n}\right)\right)$ to exactly recover $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ in Mixed Sparse Linear Regression.
\uparrow Sample size $n \xlongequal{\text { Low-Degree Conjecture [H'18] }} \downarrow$ Runtime $\exp \left(\frac{k^{2}}{n}\right)$

Reminiscent of Sparse PCA [DKWB22]:
Recover k-sparse \boldsymbol{x} from $y_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}+\beta \boldsymbol{x}^{\top}\right), \quad \frac{\mathrm{n}}{p}=\Theta(1)$
\uparrow Sample size $\mathrm{n} \xlongequal{\text { Low-Degree Conjecture [H'18] }} \downarrow$ Runtime $\exp \left(\frac{k^{2}}{\mathrm{n}}\right)$

Implications

Symmetric Mixed Linear Regression

$$
y_{i}= \begin{cases}\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2 \\ -\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2\end{cases}
$$

Implications

Symmetric Mixed Linear Regression

$$
y_{i}= \begin{cases}\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2 \\ -\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2\end{cases}
$$

Symmetry: $\boldsymbol{\beta} \mapsto \pm \boldsymbol{\beta}$

Implications

Symmetric Mixed Linear Regression

$$
y_{i}= \begin{cases}\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2 \\ -\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with prob. } 1 / 2\end{cases}
$$

$$
\text { Symmetry : } \boldsymbol{\beta} \mapsto \pm \boldsymbol{\beta}
$$

Sparse Phase Retrieval
 $$
y_{i}=\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle\right|+w_{i}
$$

Sparse Phase Retrieval

Sparse Phase Retrieval

Main Results: Good News

Non-Symmetric Mixed Linear Regression

$$
\boldsymbol{\beta}_{1} \neq-\boldsymbol{\beta}_{2} \text { or } \phi \neq \frac{1}{2}
$$

Non-Symmetric Mixed Linear Regression

Non-Symmetric Mixed Linear Regression

$$
\boldsymbol{\beta}_{1} \neq-\boldsymbol{\beta}_{2} \text { or } \phi \neq \frac{1}{2}
$$

More Good News

Non-Symmetric Mixed Linear Regression $\boldsymbol{\beta}_{1} \neq-\boldsymbol{\beta}_{2}$ or $\phi \neq \frac{1}{2}$

Theorem. Provided $n=\tilde{\Omega}(k)$, the CORR algorithm recovers the joint support of $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ w.h.p.

More Good News

Non-Symmetric Mixed Linear Regression $\boldsymbol{\beta}_{1} \neq-\boldsymbol{\beta}_{2}$ or $\phi \neq \frac{1}{2}$

Theorem. Provided $n=\tilde{\Omega}(k)$, the CORR algorithm recovers the joint support of $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ w.h.p.

Translates to full recovery when combined with dense algorithms [YCS14, CYC14]

Proof Idea

The Low-Degree Method [HS17]

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_{p}$
- Planted model (with"signal") $\quad \mathbf{z} \sim \mathbb{P}_{p}$

The Low-Degree Method [HS17]

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_{p}$
- Planted model (with"signal") $\quad \mathbf{z} \sim \mathbb{P}_{p}$

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(z)
$$

The Low-Degree Method [HS17]

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $\quad z \sim \mathbb{Q}_{p}$
- Planted model (with "signal") $\quad \mathbf{z} \sim \mathbb{P}_{p}$

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(z), \quad\langle f, g\rangle:=\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(z) g(z), \quad\|f\|^{2}:=\langle f, f\rangle
$$

The Low-Degree Method [HS17]

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $\quad z \sim \mathbb{Q}_{p}$
- Planted model (with "signal") $\quad \mathbf{z} \sim \mathbb{P}_{p}$

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(z), \quad\langle f, g\rangle:=\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(z) g(z), \quad\|f\|^{2}:=\langle f, f\rangle
$$

Lemma. [MRZ15] If $\|L\|=O(1)$ as $p \rightarrow \infty$, then impossible to distinguish \mathbb{P} from \mathbb{Q} with $o(1)$ error.

The Low-Degree Method [HS17]

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $\quad z \sim \mathbb{Q}_{p}$
- Planted model (with "signal") $\quad \boldsymbol{z} \sim \mathbb{P}_{p}$

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(\boldsymbol{z}), \quad\langle f, g\rangle:=\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\boldsymbol{z}) g(\boldsymbol{z}), \quad\|f\|^{2}:=\langle f, f\rangle
$$

Lemma. [MRZ15] If $\|L\|=O(1)$ as $p \rightarrow \infty$, then impossible to distinguish \mathbb{P} from \mathbb{Q} with $o(1)$ error.

Low-Deg. Conjecture. [H18, CGHWZ22] If $\left\|L^{\leq D}\right\|=$
$O(1)$ for some $D=\omega(\log p)$, then any algorithm distinguishing \mathbb{P} from \mathbb{Q} with $o(1)$ error requires runtime $\exp (\Omega(D))$.

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(z), \quad\langle f, g\rangle:=\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\boldsymbol{z}) g(\boldsymbol{z}), \quad\|f\|^{2}:=\langle f, f\rangle
$$

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(z), \quad\langle f, g\rangle:=\mathbb{E}_{z \sim \mathbb{Q}} f(z) g(z), \quad\|f\|^{2}:=\langle f, f\rangle
$$

Proposition. [KWB19] The unique solution f^{*} to the optimization problem

$$
\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{P}} f(\boldsymbol{z})}{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(\boldsymbol{z})^{2}\right]}
$$

is the normalized LDLR $f^{*}=L^{\leq D} /\left\|L^{\leq D}\right\|$. The value is $\left\|L^{\leq D}\right\|$.

$$
L(z):=\frac{d \mathbb{P}}{d \mathbb{Q}}(z), \quad\langle f, g\rangle:=\mathbb{E}_{z \sim \mathbb{Q}} f(z) g(z), \quad\|f\|^{2}:=\langle f, f\rangle
$$

Proposition. [KWB19] The unique solution f^{*} to the optimization problem

$$
\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{P}} f(\boldsymbol{z})}{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(\boldsymbol{z})^{2}\right]}=\max _{f \operatorname{deg} D} \frac{\langle L, f\rangle}{\|f\|^{2}}
$$

is the normalized $\operatorname{LDLR} f^{*}=L^{\leq D} /\left\|L^{\leq D}\right\|$. The value is $\left\|L^{\leq D}\right\|$.

Detection Variant

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Detection Variant

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Under \mathbb{P}, observe $\boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$, and y_{i} as above.

Detection Variant

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i}, \quad \text { with indep. prob. } 1-\phi
\end{array}\right.
$$

Under \mathbb{P}, observe $\boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$, and y_{i} as above.
Under \mathbb{Q}, observe $\left(y_{i}, \boldsymbol{x}_{i}\right) \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0},\left[\begin{array}{cc}\left(\left\|\boldsymbol{\beta}_{\mathbf{1}}\right\|_{2}^{2}+\sigma^{2}\right) & \mathbf{0} \\ \mathbf{0} & \boldsymbol{I}_{p}\end{array}\right]\right)$.

Detection Variant

$$
y_{i}=\left\{\begin{array}{l}
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{1}\right\rangle+w_{i}, \quad \text { with indep. prob. } \phi \\
\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}_{2}\right\rangle+w_{i},
\end{array} \text { with indep. prob. } 1-\phi\right. \text {, }
$$

Under \mathbb{P}, observe $\boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$, and y_{i} as above.
Under \mathbb{Q}, observe $\left(y_{i}, \boldsymbol{x}_{i}\right) \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0},\left[\begin{array}{cc}\left(\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}+\sigma^{2}\right) & \mathbf{0} \\ \mathbf{0} & \boldsymbol{I}_{p}\end{array}\right]\right)$.
Goal: Test whether $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[n]}$ came from \mathbb{P} or from \mathbb{Q}, with o(1) error as $p \rightarrow \infty$.

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X}_{\boldsymbol{\beta}_{2}} \odot(1-\boldsymbol{z})+\boldsymbol{w}, \quad z_{i} \stackrel{\text { i.i.d }}{\sim} \operatorname{Bernoulli}(\phi)
$$

Proof Notation

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}, \quad z_{i} \stackrel{\text { i.i.d }}{\sim} \operatorname{Bernoulli}(\phi)
$$

$\boldsymbol{X}_{\boldsymbol{j}}$: column, $\quad \boldsymbol{x}_{i}$: row

$$
\boldsymbol{\alpha} \in \mathbb{R}^{\mathrm{n} \times(p+1)}:|\boldsymbol{\alpha}|=\sum_{i, j} \alpha_{i, j}, \boldsymbol{\alpha}!=\prod_{i, j} \alpha_{i, j}!
$$

Goal: compute $\left\|L^{\leq D}\right\|^{2}$

Goal: compute $\left\|L^{\leq D}\right\|^{2}$
Input: $(\boldsymbol{y}, \boldsymbol{X}) \in \mathbb{R}^{\mathrm{n} \times(p+1)}$

> Goal: compute $\|L \leq D\|^{2}$
> Input: $(\boldsymbol{y}, \boldsymbol{X}) \in \mathbb{R}^{\mathrm{n} \times(p+1)}$
orthonormal basis for poly. deg D w.r.t \mathbb{Q}

Goal: compute $\|L \leq D\|^{2}$

$$
\text { Input: }(\boldsymbol{y}, \boldsymbol{X}) \in \mathbb{R}^{\mathrm{n} \times(p+1)}
$$

orthonormal basis for poly. deg D w.r.t \mathbb{Q}

$$
\frac{1}{\sqrt{\boldsymbol{\alpha}!}} H_{\alpha}(\boldsymbol{u})=\frac{1}{\sqrt{\boldsymbol{\alpha}!}} \prod_{i=1}^{\mathrm{n}} \prod_{j=1}^{p+1} H_{\alpha_{i, j}}\left(u_{i, j}\right), \quad \boldsymbol{\alpha}, \boldsymbol{u} \in \mathbb{R}^{\mathrm{n} \times(p+1)}
$$

$\|\leq \leq\|^{2}$

$$
\left\|L^{\leq D}\right\|^{2}=\sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!}\left\langle L, H_{\alpha}\right\rangle^{2}
$$

$$
\begin{aligned}
& \left\|L^{\leq D}\right\|^{2}=\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!}\left\langle L, H_{\boldsymbol{\alpha}}\right\rangle^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{Q}}\left[L(\boldsymbol{y}, \boldsymbol{x}) H_{\alpha}(\boldsymbol{x}, \boldsymbol{y})\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|L^{\leq D}\right\|^{2}=\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!}\left\langle L, H_{\boldsymbol{\alpha}}\right\rangle^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{Q}}\left[L(\boldsymbol{y}, \boldsymbol{X}) H_{\alpha}(\boldsymbol{X}, \boldsymbol{y})\right]^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[H_{\boldsymbol{\alpha}}(\boldsymbol{x}, \boldsymbol{y})\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|L^{\leq D}\right\|^{2}=\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!}\left\langle L, H_{\boldsymbol{\alpha}}\right\rangle^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{Q}}\left[L(\boldsymbol{y}, \boldsymbol{X}) H_{\boldsymbol{\alpha}}(\boldsymbol{X}, \boldsymbol{y})\right]^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[H_{\alpha}(\boldsymbol{X}, \boldsymbol{y})\right]^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \\
& \mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{\mathrm{n}} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\text {GIP }} H_{\alpha_{i, p+1}}(\underbrace{\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}})]^{\mathcal{N}(0,1)}
\end{aligned}
$$

$\left\|L^{\leq D}\right\|^{2}$
$=\sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!}$
$\mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{\mathrm{n}} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\text {GIP }} H_{\alpha_{i, p+1}}(\underbrace{\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}}_{\mathcal{N}(0,1)})]^{2}$

$$
\begin{aligned}
& \left\|L^{\leq D}\right\|^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \\
& \mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{n}(\underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\text {GIP }} H_{\alpha_{i, p+1}}(\underbrace{\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}}_{\mathcal{N}(0,1)}]^{\sum_{0 \leq|\boldsymbol{\alpha}| \leq D}}]^{\frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(\mathrm{n}, p+1)}\right.}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\left.\boldsymbol{\alpha}_{i, j} \cdot H_{\tilde{\alpha}_{i, p+1}}(\mathcal{N}(0,1))\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \|L \leq D\|^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \\
& \mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{\mathrm{n}} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\operatorname{GIP}} H_{\alpha_{i, p+1}}(\underbrace{\left.\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}\right]^{(\underbrace{(n, p+1)}}]^{2}}_{\mathcal{N}(0,1)}]^{\prod_{(i, j)=(1,1)}}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}} \cdot H_{\tilde{\alpha}_{i, p+1}}(\mathcal{N}(0,1))]^{2} \\
& \approx \sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}}\right]^{2}
\end{aligned}
$$

$\left\|L^{\leq D}\right\|^{2}$
$=\sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!}$
$\mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{\mathrm{n}} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\text {GIP }} H_{\alpha_{i, p+1}}(\underbrace{\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}}_{\mathcal{N}(0,1)})]^{2}$
$\approx \sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(n, p+1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}} \cdot H_{\tilde{\alpha}_{i, p+1}}(\mathcal{N}(0,1))\right]^{2}$
$\approx \sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(n, p+1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}}\right]^{2}$
$\underset{\sim}{\text { symm }}$.

$$
\begin{aligned}
& \left\|L^{\leq D}\right\|^{2} \\
& =\sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \\
& \mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{\mathrm{n}}(\underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\text {GIP }} H_{\alpha_{i, p+1}}(\underbrace{\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}}_{\mathcal{N}^{(0,1)}})]^{2} \\
& \approx \sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(n, p+1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}} \cdot \boldsymbol{H}_{\tilde{\alpha}_{i, p+1}}(\mathcal{N}(0,1))\right]^{2} \\
& \approx \sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(n, p+1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}}\right]^{2} \\
& \underset{\sim}{\text { symm. }} \sum_{d}^{D} \mathbb{E}_{\mathbb{P}}\left[\left\langle\boldsymbol{\beta}_{1}^{(1)}, \boldsymbol{\beta}_{1}^{(2)}\right\rangle^{2 d}\right]
\end{aligned}
$$

$\left\|L^{\leq D}\right\|^{2}$
$=\sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!}$
$\mathbb{E}_{\mathbb{P}}[\prod_{i=1}^{\mathrm{n}} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i, j}}\left(X_{i, j}\right)\right)}_{\text {GIP }} H_{\alpha_{i, p+1}}(\underbrace{\frac{\left(\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z})+\boldsymbol{w}\right)}{\sqrt{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}}_{\mathcal{N}(0,1)})]^{2}$
$\approx \sum_{0 \leq|\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(n, p+1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}} \cdot H_{\tilde{\alpha}_{i, p+1}}(\mathcal{N}(0,1))\right]^{2}$
$\approx \sum_{0 \leq|\boldsymbol{\alpha}| \leq D} \frac{1}{\boldsymbol{\alpha}!} \mathbb{E}_{\mathbb{P}}\left[\prod_{(i, j)=(1,1)}^{(\mathrm{n}, p+1)}\left(\boldsymbol{\beta}_{1, j} z_{i}+\boldsymbol{\beta}_{2, j}\left(1-z_{i}\right)\right)^{\boldsymbol{\alpha}_{i, j}}\right]^{2}$
$\stackrel{\text { symm. }}{\approx} \sum_{d}^{D} \mathbb{E}_{\mathbb{P}}\left[\left\langle\boldsymbol{\beta}_{1}^{(1)}, \boldsymbol{\beta}_{1}^{(2)}\right\rangle^{2 d}\right]=O(1)$ for $D \leq \frac{k^{2}}{\mathrm{n}}$.

Proof Idea: Good News

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad z_{i} \stackrel{i . i . d}{\sim} \operatorname{Bernoulli}(\phi)
$$

Proof Idea: Good News

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad z_{i} \stackrel{i . i . d}{\sim} \operatorname{Bernoulli}(\phi) \\
\mathcal{S}_{1}:=\left\{j \in[p]: \boldsymbol{\beta}_{1, j}>0\right\}
\end{gathered}
$$

Proof Idea: Good News

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad z_{i} i \frac{i . i . d}{\sim} \operatorname{Bernoulli}(\phi) \\
\mathcal{S}_{1}:=\left\{j \in[p]: \boldsymbol{\beta}_{1, j}>0\right\}
\end{gathered}
$$

[BAHSWZ22]:
$\boldsymbol{\operatorname { C o R R }}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\}$

Proof Idea: Good News

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad z_{i} i, i . d \operatorname{Bernoulli}(\phi) \\
\mathcal{S}_{1}:=\left\{j \in[p]: \boldsymbol{\beta}_{1, j}>0\right\}
\end{gathered}
$$

[BAHSWZ22]:
$\operatorname{CORR}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\}$

$$
u_{j}:=\frac{\langle\boldsymbol{X}, \boldsymbol{y}\rangle}{\|\boldsymbol{y}\|_{2}}
$$

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad \boldsymbol{z} \stackrel{i . i . d}{\sim} \operatorname{Bernoulli}(\phi) \\
\operatorname{CORR}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left|\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\} \\
u_{j}:=\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad \boldsymbol{z} \stackrel{\text { i.i.d }}{\sim} \text { Bernoulli }(\phi) \\
\operatorname{CORR}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left\langle\boldsymbol{x}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\} \\
u_{j}:=\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}
\end{gathered}
$$

$$
j \in\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)^{C}: u_{j} \stackrel{i . i . d}{\sim} \mathcal{N}(0,1)
$$

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad \boldsymbol{z} \stackrel{\text { i.i.d }}{\sim} \text { Bernoulli }(\phi) \\
\operatorname{CORR}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\} \\
u_{j}:=\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}
\end{gathered}
$$

$$
j \in\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)^{\complement}: u_{j} \stackrel{i . i . d}{\sim} \mathcal{N}(0,1)
$$

$$
\max _{j \in[p]} u_{j}<\sqrt{2(1+\epsilon / 2) \log 2 p}
$$

$$
\begin{gathered}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad \boldsymbol{z} \stackrel{i . i . d}{\sim} \operatorname{Bernoulli}(\phi) \\
\operatorname{CORR}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\} \\
u_{j}:=\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}
\end{gathered}
$$

$j \in \mathcal{S}_{1} \cap \mathcal{S}_{2}:$

$$
\mathbb{E}\left[\boldsymbol{X}_{j, i} \mid y_{i}, \boldsymbol{\beta}_{1}, \boldsymbol{z}_{i}=1\right]=\frac{y_{i} \cdot \boldsymbol{\beta}_{1, j}}{\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}+\sigma^{2}}
$$

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}_{1} \odot \boldsymbol{z}+\boldsymbol{X} \boldsymbol{\beta}_{2} \odot(1-\boldsymbol{z}), \quad \boldsymbol{z} \stackrel{\text { i.i.d }}{\sim} \operatorname{Bernoulli}(\phi)
$$

$$
\begin{gathered}
\operatorname{CORR}(\boldsymbol{X}, \boldsymbol{y}):=\left\{j \in[p]:\left|\frac{\left\langle\boldsymbol{x}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}\right| \geq \sqrt{2(1+\epsilon / 2) \log 2 p}\right\} \\
u_{j}:=\frac{\left\langle\boldsymbol{X}_{j}, \boldsymbol{y}\right\rangle}{\|\boldsymbol{y}\|_{2}}
\end{gathered}
$$

$j \in \mathcal{S}_{1} \cap \mathcal{S}_{2}:$

$$
\begin{gathered}
\mathbb{E}\left[\boldsymbol{X}_{j, i} \mid y_{i}, \boldsymbol{\beta}_{1}, \boldsymbol{z}_{i}=1\right]=\frac{y_{i} \cdot \boldsymbol{\beta}_{1, j}}{\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}+\sigma^{2}} \\
\mathbb{E}\left[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]=\frac{\left\|\boldsymbol{y}_{\{z=1\}}\right\|_{2}^{2} \boldsymbol{\beta}_{1, j}+\left\|\boldsymbol{y}_{\{z=0\}}\right\|_{2}^{2} \boldsymbol{\beta}_{2, j}}{\|\boldsymbol{y}\|_{2}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)}
\end{gathered}
$$

$$
\mathbb{E}\left[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]=\frac{\left\|\boldsymbol{y}_{\{z=1\}}\right\|_{2}^{2} \boldsymbol{\beta}_{1, j}+\left\|\boldsymbol{y}_{\{z=0\}}\right\|_{2}^{2} \boldsymbol{\beta}_{2, j}}{\|\boldsymbol{y}\|_{2}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)}
$$

$$
\begin{aligned}
& \mathbb{E}\left[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]=\frac{\left\|\boldsymbol{y}_{\{z=1\}}\right\|_{2}^{2} \boldsymbol{\beta}_{1, j}+\left\|\boldsymbol{y}_{\{z=0\}}\right\|_{2}^{2} \boldsymbol{\beta}_{2, j}}{\|\boldsymbol{y}\|_{2}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& \|\boldsymbol{y}\|_{2} \approx \sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]=\frac{\left\|\boldsymbol{y}_{\{\mathbf{z}=1\}}\right\|_{2}^{2} \boldsymbol{\beta}_{1, j}+\left\|\boldsymbol{y}_{\{z=0\}}\right\|_{2}^{2} \boldsymbol{\beta}_{2, j}}{\|\boldsymbol{y}\|_{2}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& \|\boldsymbol{y}\|_{2} \approx \sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& u_{j} \approx \frac{\phi \mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right) \boldsymbol{\beta}_{1, j}+(1-\phi) \mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right) \boldsymbol{\beta}_{2, j}}{\sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]=\frac{\left\|\boldsymbol{y}_{\{\boldsymbol{z}=1\}}\right\|_{2}^{2} \boldsymbol{\beta}_{1, j}+\left\|\boldsymbol{y}_{\{z=0\}}\right\|_{2}^{2} \boldsymbol{\beta}_{2, j}}{\|\boldsymbol{y}\|_{2}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& \|\boldsymbol{y}\|_{2} \approx \sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& u_{j} \approx \frac{\phi \mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right) \boldsymbol{\beta}_{1, j}+(1-\phi) \mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right) \boldsymbol{\beta}_{2, j}}{\sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& \quad=\sqrt{\frac{\mathrm{n}}{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}\left(\phi \boldsymbol{\beta}_{1, j}+(1-\phi) \boldsymbol{\beta}_{2, j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]=\frac{\left\|\boldsymbol{y}_{\{\boldsymbol{z}=1\}}\right\|_{2}^{2} \boldsymbol{\beta}_{1, j}+\left\|\boldsymbol{y}_{\{\boldsymbol{z}=0\}}\right\|_{2}^{2} \boldsymbol{\beta}_{2, j}}{\|\boldsymbol{y}\|_{2}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& \|\boldsymbol{y}\|_{2} \approx \sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)} \\
& u_{j}
\end{aligned} \begin{aligned}
& \approx \frac{\phi \mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right) \boldsymbol{\beta}_{1, j}+(1-\phi) \mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right) \boldsymbol{\beta}_{2, j}}{\sqrt{\mathrm{n}\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)\left(\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}\right)}} \\
& \quad=\sqrt{\frac{\mathrm{n}}{\|\boldsymbol{\beta}\|_{2}^{2}+\sigma^{2}}}\left(\phi \boldsymbol{\beta}_{1, j}+(1-\phi) \boldsymbol{\beta}_{2, j}\right) \\
& \quad \mathrm{n}=\tilde{\Omega}(k) \\
& \gg \sqrt{2(1+\epsilon / 2) \log 2 p} .
\end{aligned}
$$

Summary

- Narrow symmetric case: $\mathrm{n}=\tilde{\Omega}\left(k^{2}\right)$
- Broad non-symmetric case: $\mathrm{n}=\tilde{\Omega}(k)$

Future

Future

- Sub-exp algorithms for MSLR, Sparse Phase Retrieval

Future

- Sub-exp algorithms for MSLR, Sparse Phase Retrieval
- Adversarial instances of "robust" inference are mixtures, ex: Robust Mean Est., Robust Lin Reg [DK23, BB20]

Future

- Sub-exp algorithms for MSLR, Sparse Phase Retrieval
- Adversarial instances of "robust" inference are mixtures, ex: Robust Mean Est., Robust Lin Reg [DK23, BB20]

Eigenspace Computation
Compute the principal subspace of a symmetric matrix.

$\min _{\boldsymbol{X}^{*}} \boldsymbol{X}=\boldsymbol{I}-\frac{1}{2} \operatorname{trace}\left[\boldsymbol{X}^{*} \boldsymbol{A} \boldsymbol{X}\right]$.
Symmetry: $\boldsymbol{X} \mapsto \boldsymbol{X} \boldsymbol{R}$ $\mathbb{G}=\mathrm{O}(r)$

Generalized Phase Retrieval
Recover a complex vector \boldsymbol{x}_{o} from magnitude measurements $\boldsymbol{y}=\left|\boldsymbol{A} \boldsymbol{x}_{o}\right|$.

$\min _{\boldsymbol{x}} \frac{1}{2}\left\|\boldsymbol{y}^{2}-|\boldsymbol{A} \boldsymbol{x}|^{2}\right\|_{2}^{2}$.
Symmetry: $\boldsymbol{x} \mapsto \boldsymbol{x} e^{\mathrm{i} \phi}$ $\mathbb{G}=\mathbb{S}^{1} \cong \mathrm{O}(2)$

Matrix Recovery

Recover a low-rank matrix $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{V}^{*}$ from incomplete/corrupted observations

$$
\begin{gathered}
\min _{\boldsymbol{U}, \boldsymbol{V}} \mathcal{L}\left(\boldsymbol{Y}-\mathcal{A}\left[\boldsymbol{U} \boldsymbol{V}^{*}\right]\right)+\rho(\boldsymbol{U}, \boldsymbol{V}) \\
\text { Symmetry: }(\boldsymbol{U}, \boldsymbol{V}) \mapsto\left(\boldsymbol{U} \boldsymbol{\Gamma}, \boldsymbol{V} \boldsymbol{\Gamma}^{-*}\right) \\
\mathbb{G}=\mathrm{GL}(r) \text { or } \mathbb{G}=\mathrm{O}(r)
\end{gathered}
$$

[WM22]

Appendix: The Low-Degree Method [HS17]

Goal: Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $\quad \boldsymbol{z} \sim \mathbb{Q}_{p}$
- Planted model (with "signal") $\quad \mathbf{z} \sim \mathbb{P}_{p}$

Compute

$$
\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{P}}[f(\boldsymbol{z})]}{\sqrt{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}}\left[f(\boldsymbol{z})^{2}\right]}} \quad \frac{\text { mean in } \mathbb{P}}{\text { fluctuations in } \mathbb{Q}}
$$

Appendix: The Low-Degree Method [HS17]

Goal: Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $\quad \boldsymbol{z} \sim \mathbb{Q}_{p}$
- Planted model (with "signal") $\quad \mathbf{z} \sim \mathbb{P}_{p}$

Can we find a low-degree polynomial $f(\boldsymbol{z})$ that is big for $\boldsymbol{z} \sim \mathbb{P}$ and small for $\boldsymbol{z} \sim \mathbb{Q}$?

Compute

$$
\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{P}}[f(\boldsymbol{z})]}{\sqrt{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}}\left[f(\boldsymbol{z})^{2}\right]}} \quad \frac{\text { mean in } \mathbb{P}}{\text { fluctuations in } \mathbb{Q}}
$$

Appendix: The Low-Degree Method [HS17]

$\max _{f \operatorname{deg}} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{P}}[f(\mathbf{z})]}{\sqrt{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(\mathbf{z})^{2}\right]}}$

Appendix: The Low-Degree Method [HS17]

$\begin{aligned} \max _{f \operatorname{deg} D} & \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{P}}[f(\mathbf{z})]}{\sqrt{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(\mathbf{z})^{2}\right]}} \\ & =\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}[L f(z)]}{\sqrt{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(\mathbf{z})^{2}\right]}}\end{aligned}$

$$
L=\frac{d \mathbb{P}}{d \mathbb{Q}}
$$

Appendix: The Low-Degree Method [HS17]

$\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(z)^{2}\right]}}$

$$
\begin{aligned}
& =\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}[L f(z)]}{\sqrt{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(z)^{2}\right]}} \quad L=\frac{d \mathbb{P}}{d \mathbb{Q}} \\
& =\max _{f \operatorname{deg} D} \frac{\langle L, f\rangle}{\|f\|}
\end{aligned} \quad\langle f, g\rangle:=\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}[f(z) g(z)] .
$$

Appendix: The Low-Degree Method [HS17]

$$
\begin{aligned}
\max _{f \operatorname{deg} D} & \frac{\mathbb{E}_{z \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}\left[f(z)^{2}\right]}} \\
& =\max _{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}[L f(z)]}{\sqrt{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}}\left[f(z)^{2}\right]}} \\
& =\max _{f \operatorname{deg} D} \frac{\langle L, f\rangle}{\|f\|} \\
& =\|L \leq D\|
\end{aligned}
$$

$$
L=\frac{d \mathbb{P}}{d \mathbb{Q}}
$$

$$
\langle f, g\rangle:=\mathbb{E}_{\mathbf{z} \sim \mathbb{Q}}[f(\boldsymbol{z}) g(\boldsymbol{z})]
$$

Appendix: The Low-Degree Conjecture

Informal. [H18, CGHWZ22] Assume "sufficiently nice" distributions \mathbb{P}, \mathbb{Q}. If $\left\|L^{\leq D}\right\|=O(1)$ for some $D=\omega(\log p)$, then algorithms require runtime $\exp (\tilde{\Omega}(D))$ to distinguish \mathbb{P} from \mathbb{Q}.

Symmetric Mixed Linear Detection

$$
y_{i}= \begin{cases}\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with indep. prob. } 1 / 2 \\ -\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle+w_{i}, & \text { with indep. prob. } 1 / 2\end{cases}
$$

Under \mathbb{P}, observe $\boldsymbol{x}_{i} \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$, and y_{i} as above.
Under \mathbb{Q}, observe $\left(y_{i}, \boldsymbol{x}_{i}\right) \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mathbf{0},\left[\begin{array}{cc}\left(\left\|\boldsymbol{\beta}_{1}\right\|_{2}^{2}+\sigma^{2}\right) & \mathbf{0} \\ \mathbf{0} & \boldsymbol{I}_{p}\end{array}\right]\right)$.
Goal: Test whether $\left(y_{i}, \boldsymbol{x}_{i}\right)_{i \in[n]}$ came from \mathbb{P} or from \mathbb{Q}, with vanishing error probability as $p \rightarrow \infty$.

More Bad News

Symmetric Mixed Linear Regression: $\operatorname{SNR}=\infty$

$$
y_{i}= \pm\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle
$$

More Bad News

Symmetric Mixed Linear Regression: SNR $=\infty$

$$
y_{i}= \pm\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle \stackrel{|\cdot|}{\Longleftrightarrow}\left|y_{i}\right|=\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle\right|
$$

More Bad News

Symmetric Mixed Linear Regression: SNR $=\infty$

$$
y_{i}= \pm\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle \stackrel{|\cdot|}{\Longleftrightarrow}\left|y_{i}\right|=\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle\right|
$$

Corollary. (Conditional on LDC) For $k=o(\sqrt{p})$ and $k \lesssim n \lesssim k^{2}$, runtime $\exp \left(\frac{k^{2}}{n}\right)$ is required to solve a detection variant of Sparse Phase Retrieval.

More Bad News

Symmetric Mixed Linear Regression: $\operatorname{SNR}=\infty$

$$
y_{i}= \pm\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle \stackrel{|\cdot|}{\Longleftarrow}\left|y_{i}\right|=\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}\right\rangle\right|
$$

Corollary. (Conditional on LDC) For $k=o(\sqrt{p})$ and $k \lesssim n \lesssim k^{2}$, runtime $\exp \left(\frac{k^{2}}{n}\right)$ is required to solve a detection variant of Sparse Phase Retrieval.
\Longrightarrow Provides rigorous evidence for computational hardness of Sparse Phase Retrieval when $n=\tilde{o}\left(k^{2}\right)$!

