Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression

Gabriel Arpino, Ramji Venkataramanan October 3rd, 2023

ci	ipboard .	A ~ ≣	E * %	н — V н = Ш жг Ш Ш	Conditional Form Format as Table Cell Styles 👻	vatting *	tells Edit
A1	\$	× √ fx	IATA_CODE				
	A	8	с	D	E	F	G
1	IATA_CODE	AJRPORT	CITY	STATE	COUNTRY	LATITUDE	LONGITUDE
2	ABE	Lehigh Valler	Allentown	PA	USA	40.65236	-75.4404
3	ABI	Abilene Regi	Abiene	TX	USA	32.41132	-99.6819
4	ABQ	Albuquerque	Albuquerque	NM	USA	35.04022	-106.60919
5	ABR	Aberdeen Re	Aberdeen	SD	USA	45.44906	-98.42183
6	ABY	Southwest G	Albany	GA	USA	31.53552	-84.19447
7	ACK	Nantucket N	Nantucket	MA	USA	41.25305	-70.06018
8	ACT	Waco Region	Waco	TX	USA	31.61129	-97.23052
9	ACV	Arcata Airpo	r Arcata/Eurek	CA	USA	40.97812	-124.10862
10	ACY	Atlantic City	Atlantic City	NJ	USA	39.45758	-74.57717
	5 air	norte oiri	the court				

High-Dimensionality

Heterogeneity

Q: minimal information and computation to recover?

 \rightarrow n

$\begin{array}{c|c} & & \downarrow \\ \hline IT \text{ Impossible } & n_{IT} & \text{Solvable} \end{array} \rightarrow n$

Ex: Communications [S98], Graphical Models [SW09], Regression [MM18], ...

Ex: Communications [S98], Graphical Models [SW09], Regression [MM18], ...

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...]

Failure of efficient families: MCMC, AMP, Stat Query [BMNW22, GJ19, BBHLS21, ...] Average Case Reductions [BB20, BR13, ...]

Low-Degree Conjecture [H18]:

Low-Degree Conjecture [H18]:

polynomials of degree log (dimension) w.r.t input

Low-Degree Conjecture [H18]:

 Mixed Sparse Linear Regression (MSLR) Bad News Good News

Proof

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

on observations $(y_i, \mathbf{x}_i)_{i \in [n]}$

$$y_{i} = \begin{cases} \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{1} \rangle + w_{i}, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{2} \rangle + w_{i}, & \text{with indep. prob. } 1 - \phi \end{cases}$$

 \circ n observations $(y_{i}, \boldsymbol{x}_{i})_{i \in [n]}$
 $\circ \boldsymbol{x}_{i} \in \mathbb{R}^{p}$ covariates

 $y_{i} = \begin{cases} \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{1} \rangle + w_{i}, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{2} \rangle + w_{i}, & \text{with indep. prob. } 1 - \phi \end{cases}$ \circ n observations $(y_{i}, \boldsymbol{x}_{i})_{i \in [n]}$ $\circ \boldsymbol{x}_{i} \in \mathbb{R}^{p}$ covariates $\circ \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \in \mathbb{R}^{p}$

 $y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$ • n observations $(y_i, x_i)_{i \in [n]}$ • $\mathbf{x}_i \in \mathbb{R}^p$ covariates $\circ \beta_1, \beta_2 \in \mathbb{R}^p$ $\circ w_i \in \mathbb{R}$ noise

 $y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$ • n observations $(y_i, x_i)_{i \in [n]}$ $\circ \mathbf{x}_i \in \mathbb{R}^p$ covariates $\circ \beta_1, \beta_2 \in \mathbb{R}^p$ $\circ w_i \in \mathbb{R}$ noise **Goal:** Recover β_1 , β_2 w.h.p as $p \to \infty$, given only $(y_i, \mathbf{x}_i)_{i \in [n]}$

Applications: Health Care [IHHM'22], Music Perception [VT'02], Market Segmentation [WK'00], ...

$$y_i = \begin{cases} \langle \mathbf{x}_i, \mathbf{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \mathbf{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

 $y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta_1} \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta_2} \rangle + w_i, & \text{with indep. prob. } 1 - \phi \\ \circ n \ll p \end{cases}$

$$y_{i} = \begin{cases} \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{1} \rangle + w_{i}, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{2} \rangle + w_{i}, & \text{with indep. prob. } 1 - \phi \end{cases}$$

$$\circ \ \mathbf{n} << p$$

$$\circ \ \boldsymbol{x}_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{I}_{p})$$

 $y_{i} = \begin{cases} \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{1} \rangle + w_{i}, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{2} \rangle + w_{i}, & \text{with indep. prob. } 1 - \phi \end{cases}$ $\circ \mathbf{n} << p$ $\circ \boldsymbol{x}_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{I}_{p})$ $\circ w_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \sigma^{2})$ $y_{i} = \begin{cases} \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{1} \rangle + w_{i}, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_{i}, \boldsymbol{\beta}_{2} \rangle + w_{i}, & \text{with indep. prob. } 1 - \phi \end{cases}$ $\circ n << p$ $\circ \boldsymbol{x}_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{p})$ $\circ w_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(\boldsymbol{0}, \sigma^{2})$ $\circ \|\boldsymbol{\beta}_{1}\|_{0} = \|\boldsymbol{\beta}_{2}\|_{0} = k << p$

 $y_i = \begin{cases} \langle \boldsymbol{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$ \circ n << p $\circ \mathbf{x}_i \overset{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$ $\circ w_i \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$ $\circ \|\beta_1\|_0 = \|\beta_2\|_0 = k \ll p$ $\circ \|\beta_1\|_2^2 = \|\beta_2\|_2^2 = \Theta(k)$
$y_i = \begin{cases} \langle \boldsymbol{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$ \circ n << p $\circ \mathbf{x}_i \overset{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$ $\circ w_i \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$ $\circ \|\beta_1\|_0 = \|\beta_2\|_0 = k \ll p$ $||\beta_1||_2^2 = ||\beta_2||_2^2 = \Theta(k)$ \circ SNR = $\frac{\|\beta_1\|_2^2}{r^2}$

$$y_i = \begin{cases} \langle \boldsymbol{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \boldsymbol{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta_1} \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta_2} \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

Max. likelihood is non-convex, NP-Hard [YCS'14]

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

Max. likelihood is non-convex, NP-Hard [YCS'14] AM (noiseless), AMP (proportional regime), ... [YCS'14], [TV'23]

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta_1} \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta_2} \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

Max. likelihood is non-convex, NP-Hard [YCS'14] AM (noiseless), AMP (proportional regime), ... [YCS'14], [TV'23] **Best:** ℓ_1 -penalization + EM needs n = $\tilde{\Omega}(k^2)$ [SBG'10], [MP'22]

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

Max. likelihood is non-convex, NP-Hard [YCS'14] AM (noiseless), AMP (proportional regime), ... [YCS'14], [TV'23] **Best:** ℓ_1 -penalization + EM needs $n = \tilde{\Omega}(k^2)$ [SBG'10], [MP'22] **Linear Regression** needs just $n = \tilde{\Omega}(k)$ [RXZ'19], [GZ'22]

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{eta}_1
angle + \mathbf{w}_i, & ext{with prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{eta}_2
angle + \mathbf{w}_i, & ext{with prob. } 1 - \phi \end{cases}$$

Extreme Cases

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1
angle + w_i, & \text{with prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2
angle + w_i, & \text{with prob. } 1 - \phi \end{cases}$$

• $\phi = 1$: Linear Regression

$$y_i = \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i$$

Extreme Cases

$$y_i = \begin{cases} \langle \boldsymbol{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with prob. } \phi \\ \langle \boldsymbol{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with prob. } 1 - \phi \end{cases}$$

• $\phi = 1$: Linear Regression

$$y_i = \langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + w_i$$

 \circ $\beta_1 = -\beta_2$, $\phi = 1/2$: Symmetric Mixed Linear Regression

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \\ -\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \end{cases}$$

Theorem. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, analytic polynomials of degree less than $\frac{k^2}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.

Theorem. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, analytic polynomials of degree less than $\frac{k^2}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.

Low-Degree Conjecture [H18] + Reduction to Recovery \downarrow

Theorem. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, analytic polynomials of degree less than $\frac{k^2}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.

↓ Low-Degree Conjecture [H18] + Reduction to Recovery ↓

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, any randomized algorithm requires runtime exp $\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Symmetric Mixed Linear Regression.

Theorem. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, analytic polynomials of degree less than $\frac{k^2}{n}$ cannot solve a hypothesis testing variant of Symmetric Mixed Linear Regression.

↓ Low-Degree Conjecture [H18] + Reduction to Recovery ↓

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, any randomized algorithm requires runtime exp $\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Symmetric Mixed Linear Regression.

This runtime is *super-polynomial* in the input!

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$,

any randomized algorithm requires runtime $\exp\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Mixed Sparse Linear Regression.

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, any randomized algorithm requires runtime $\exp\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Mixed Sparse Linear Regression.

$$\uparrow \text{ Sample size } n \quad \xleftarrow{\text{Low-Degree Conjecture [H'18]}} \qquad \downarrow \text{ Runtime } \exp\left(\frac{k^2}{n}\right)$$

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, any randomized algorithm requires runtime $\exp\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Mixed Sparse Linear Regression.

$$\uparrow \text{ Sample size } n \quad \xleftarrow{\text{Low-Degree Conjecture [H'18]}} \qquad \downarrow \text{ Runtime } \exp\left(\frac{k^2}{n}\right)$$

Reminiscent of Sparse PCA [DKWB22]:

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, any randomized algorithm requires runtime $\exp\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Mixed Sparse Linear Regression.

$$\uparrow \text{ Sample size } n \quad \xleftarrow{\text{Low-Degree Conjecture [H'18]}} \qquad \downarrow \text{ Runtime } \exp\left(\frac{k^2}{n}\right)$$

Reminiscent of Sparse PCA [DKWB22]: Recover k-sparse x from $y_i \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p + \beta \mathbf{x} \mathbf{x}^T), \quad \frac{n}{p} = \Theta(1)$

Corollary. For $k = o(\sqrt{p})$ and $k \ll n \ll k^2$, any randomized algorithm requires runtime $\exp\left(\tilde{\Omega}\left(\frac{k^2}{n}\right)\right)$ to exactly recover β_1, β_2 in Mixed Sparse Linear Regression.

$$\uparrow \text{ Sample size } n \quad \xleftarrow{\text{Low-Degree Conjecture [H'18]}} \qquad \downarrow \text{ Runtime } \exp\left(\frac{k^2}{n}\right)$$

Reminiscent of Sparse PCA [DKWB22]: Recover k-sparse x from $y_i \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p + \beta \mathbf{x} \mathbf{x}^T), \quad \frac{n}{p} = \Theta(1)$

$$\uparrow \text{ Sample size } n \xleftarrow{\text{Low-Degree Conjecture [H'18]}} \downarrow \text{ Runtime } \exp\left(\frac{k^2}{n}\right)$$

Implications

Symmetric Mixed Linear Regression

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \\ -\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \end{cases}$$

Implications

Symmetric Mixed Linear Regression

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \\ -\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \end{cases}$$

Symmetry : $oldsymbol{eta}\mapsto\pmoldsymbol{eta}$

Implications

Symmetric Mixed Linear Regression

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \\ -\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with prob. } 1/2 \end{cases}$$

Symmetry : $oldsymbol{eta}\mapsto\pmoldsymbol{eta}$

Sparse Phase Retrieval

$$y_i = |\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle| + w_i$$

Sparse Phase Retrieval

Sparse Phase Retrieval

Non-Symmetric Mixed Linear Regression

$$eta_1
eq -eta_2$$
 or $\phi
eq rac{1}{2}$

Non-Symmetric Mixed Linear Regression

Non-Symmetric Mixed Linear Regression $eta_1 eq -eta_2$ or $\phi eq rac{1}{2}$

Non-Symmetric Mixed Linear Regression $\beta_1 \neq -\beta_2$ or $\phi \neq \frac{1}{2}$

Theorem. Provided $n = \tilde{\Omega}(k)$, the **CORR** algorithm recovers the joint support of β_1, β_2 w.h.p.

Non-Symmetric Mixed Linear Regression $\beta_1 \neq -\beta_2$ or $\phi \neq \frac{1}{2}$

Theorem. Provided $n = \tilde{\Omega}(k)$, the **CORR** algorithm recovers the joint support of β_1, β_2 w.h.p.

Translates to full recovery when combined with dense algorithms [YCS14, CYC14]
Proof Idea

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $z \sim \mathbb{P}_p$

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $z \sim \mathbb{P}_p$

$$L(\boldsymbol{z}) := \frac{d\mathbb{P}}{d\mathbb{Q}}(\boldsymbol{z})$$

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $z \sim \mathbb{P}_p$

$$L(\mathbf{z}) := rac{d\mathbb{P}}{d\mathbb{Q}}(\mathbf{z}), \quad \langle f, g \rangle := \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\mathbf{z}) g(\mathbf{z}), \quad \|f\|^2 := \langle f, f \rangle$$

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $z \sim \mathbb{P}_p$

$$L(\mathbf{z}) := rac{d\mathbb{P}}{d\mathbb{Q}}(\mathbf{z}), \quad \langle f, g \rangle := \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\mathbf{z}) g(\mathbf{z}), \quad \|f\|^2 := \langle f, f \rangle$$

Lemma. [MRZ15] If ||L|| = O(1) as $p \to \infty$, then impossible to distinguish \mathbb{P} from \mathbb{Q} with o(1) error.

Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $oldsymbol{z}\sim\mathbb{P}_{p}$

$$L(\mathbf{z}) := \frac{d\mathbb{P}}{d\mathbb{Q}}(\mathbf{z}), \quad \langle f, g \rangle := \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\mathbf{z}) g(\mathbf{z}), \quad \|f\|^2 := \langle f, f \rangle$$

Lemma. [MRZ15] If ||L|| = O(1) as $p \to \infty$, then impossible to distinguish \mathbb{P} from \mathbb{Q} with o(1) error.

Low-Deg. Conjecture. [H18, CGHWZ22] If $||L^{\leq D}|| = O(1)$ for some $D = \omega(\log p)$, then any algorithm distinguishing \mathbb{P} from \mathbb{Q} with o(1) error requires runtime $\exp(\tilde{\Omega}(D))$.

$$L(\mathbf{z}) := rac{d\mathbb{P}}{d\mathbb{Q}}(\mathbf{z}), \quad \langle f, g \rangle := \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\mathbf{z}) g(\mathbf{z}), \quad \|f\|^2 := \langle f, f \rangle$$

$$L(\mathbf{z}) := rac{d\mathbb{P}}{d\mathbb{Q}}(\mathbf{z}), \quad \langle f, g \rangle := \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\mathbf{z}) g(\mathbf{z}), \quad \|f\|^2 := \langle f, f \rangle$$

Proposition. [KWB19] The unique solution f^* to the optimization problem

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{P}} f(\boldsymbol{z})}{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}} [f(\boldsymbol{z})^2]}$$

is the normalized LDLR $f^* = L^{\leq D} / \|L^{\leq D}\|$. The value is $\|L^{\leq D}\|$.

$$L(\mathbf{z}) := rac{d\mathbb{P}}{d\mathbb{Q}}(\mathbf{z}), \quad \langle f, g \rangle := \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} f(\mathbf{z}) g(\mathbf{z}), \quad \|f\|^2 := \langle f, f \rangle$$

Proposition. [KWB19] The unique solution f^* to the optimization problem

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{P}} f(\boldsymbol{z})}{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}} [f(\boldsymbol{z})^2]} = \max_{f \text{ deg } D} \frac{\langle L, f \rangle}{\|f\|^2}$$

is the normalized LDLR $f^* = L^{\leq D} / \|L^{\leq D}\|$. The value is $\|L^{\leq D}\|$.

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta}_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \boldsymbol{\beta}_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

$$y_i = \begin{cases} \langle \mathbf{x}_i, \beta_1
angle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \beta_2
angle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

Under \mathbb{P} , observe $\mathbf{x}_i \overset{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, and y_i as above.

$$y_i = \begin{cases} \langle \mathbf{x}_i, \beta_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \beta_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$$

Under \mathbb{P} , observe $\mathbf{x}_i \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, and y_i as above. Under \mathbb{Q} , observe $(y_i, \mathbf{x}_i) \stackrel{i.i.d}{\sim} \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} (\|\beta_1\|_2^2 + \sigma^2) & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \right)$. $y_i = \begin{cases} \langle \mathbf{x}_i, \beta_1 \rangle + w_i, & \text{with indep. prob. } \phi \\ \langle \mathbf{x}_i, \beta_2 \rangle + w_i, & \text{with indep. prob. } 1 - \phi \end{cases}$

Under \mathbb{P} , observe $\mathbf{x}_i \stackrel{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, and y_i as above. Under \mathbb{Q} , observe $(y_i, \mathbf{x}_i) \stackrel{i.i.d}{\sim} \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} (\|\beta_1\|_2^2 + \sigma^2) & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \right)$.

Goal: Test whether $(y_i, \mathbf{x}_i)_{i \in [n]}$ came from \mathbb{P} or from \mathbb{Q} , with o(1) error as $p \to \infty$.

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta}_1 \odot \mathbf{z} + \mathbf{X} \boldsymbol{\beta}_2 \odot (1 - \mathbf{z}) + \mathbf{w}, \quad z_i \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta}_1 \odot \mathbf{z} + \mathbf{X} \boldsymbol{\beta}_2 \odot (1 - \mathbf{z}) + \mathbf{w}, \quad z_i \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$

 X_j : column, x_i : row

$$\boldsymbol{\alpha} \in \mathbb{R}^{n \times (p+1)} : |\boldsymbol{\alpha}| = \sum_{i,j} \alpha_{i,j}, \boldsymbol{\alpha}! = \prod_{i,j} \alpha_{i,j}!$$

Goal: compute $\|L^{\leq D}\|^2$

Goal: compute $\|L^{\leq D}\|^2$ Input: $(\boldsymbol{y}, \boldsymbol{X}) \in \mathbb{R}^{n \times (p+1)}$ Goal: compute $\|L^{\leq D}\|^2$ Input: $(\boldsymbol{y}, \boldsymbol{X}) \in \mathbb{R}^{n \times (p+1)}$ orthonormal basis for poly. deg D w.r.t \mathbb{Q} Goal: compute $\|L^{\leq D}\|^2$ Input: $(y, X) \in \mathbb{R}^{n \times (p+1)}$ orthonormal basis for poly. deg D w.r.t \mathbb{Q}

$$rac{1}{\sqrt{lpha !}} extsf{H}_{m lpha}(m u) = rac{1}{\sqrt{lpha !}} \prod_{i=1}^{ extsf{n}} \prod_{j=1}^{ extsf{p+1}} extsf{H}_{lpha_{i,j}}(u_{i,j}), \quad m lpha, m u \in \mathbb{R}^{ extsf{n} imes (extsf{p+1})}$$

$\|L^{\leq D}\|^2$

$$\|L^{\leq D}\|^2 = \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \langle L, H_{\alpha} \rangle^2$$

$$\|L^{\leq D}\|^{2} = \sum_{\substack{0 \leq |\alpha| \leq D \\ \alpha \mid \leq D}} \frac{1}{\alpha!} \langle L, H_{\alpha} \rangle^{2}$$
$$= \sum_{\substack{0 \leq |\alpha| \leq D \\ \alpha \mid \leq D}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{Q}} [L(\boldsymbol{y}, \boldsymbol{X}) H_{\alpha}(\boldsymbol{X}, \boldsymbol{y})]^{2}$$

$$\begin{split} \|L^{\leq D}\|^2 &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \langle L, H_{\alpha} \rangle^2 \\ &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{Q}} [L(\boldsymbol{y}, \boldsymbol{X}) H_{\alpha}(\boldsymbol{X}, \boldsymbol{y})]^2 \\ &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} [H_{\alpha}(\boldsymbol{X}, \boldsymbol{y})]^2 \end{split}$$

$$\begin{split} \|L^{\leq D}\|^{2} &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \langle L, H_{\alpha} \rangle^{2} \\ &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{Q}} [L(\mathbf{y}, \mathbf{X}) H_{\alpha}(\mathbf{X}, \mathbf{y})]^{2} \\ &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} [H_{\alpha}(\mathbf{X}, \mathbf{y})]^{2} \\ &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \\ &\mathbb{E}_{\mathbb{P}} \left[\prod_{i=1}^{n} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i,j}}(X_{i,j})\right)}_{\text{GIP}} H_{\alpha_{i,p+1}} \left(\underbrace{\frac{(\mathbf{X}\beta_{1} \odot \mathbf{z} + \mathbf{X}\beta_{2} \odot (1-\mathbf{z}) + \mathbf{w})}{\sqrt{\|\beta\|_{2}^{2} + \sigma^{2}}}}_{\mathcal{N}(0,1)} \right) \right]^{2} \end{split}$$

$$\begin{split} \|L^{\leq D}\|^2 \\ &= \sum_{0 \leq |\alpha| \leq D} \frac{1}{\alpha!} \\ & \mathbb{E}_{\mathbb{P}}\left[\prod_{i=1}^n \underbrace{\left(\prod_{j=1}^p H_{\alpha_{i,j}}(X_{i,j})\right)}_{\text{GP}} H_{\alpha_{i,p+1}}\left(\underbrace{\frac{(\boldsymbol{X}\beta_1 \odot \boldsymbol{z} + \boldsymbol{X}\beta_2 \odot (1-\boldsymbol{z}) + \boldsymbol{w})}{\sqrt{\|\beta\|_2^2 + \sigma^2}}}_{\mathcal{N}(0,1)}\right)\right]^2 \end{split}$$

$$\begin{split} \|L^{\leq D}\|^{2} &= \sum_{\substack{0 \leq |\alpha| \leq D}} \frac{1}{\alpha!} \\ \mathbb{E}_{\mathbb{P}} \left[\prod_{i=1}^{n} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i,j}}(X_{i,j})\right)}_{\text{GIP}} H_{\alpha_{i,p+1}} \left(\underbrace{\frac{(\boldsymbol{X}\beta_{1} \odot \boldsymbol{z} + \boldsymbol{X}\beta_{2} \odot (1-\boldsymbol{z}) + \boldsymbol{w})}{\sqrt{\|\beta\|_{2}^{2} + \sigma^{2}}}}_{\mathcal{N}(0,1)} \right) \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\prod_{(i,j)=(1,1)}^{(n,p+1)} (\beta_{1,j}z_{i} + \beta_{2,j}(1-z_{i}))^{\alpha_{i,j}} \cdot H_{\tilde{\alpha}_{i,p+1}}(\mathcal{N}(0,1)) \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\prod_{(i,j)=(1,1)}^{(n,p+1)} (\beta_{1,j}z_{i} + \beta_{2,j}(1-z_{i}))^{\alpha_{i,j}} \right]^{2} \end{split}$$

$$\begin{split} \|L^{\leq D}\|^{2} &= \sum_{\substack{0 \leq |\alpha| \leq D}} \frac{1}{\alpha!} \\ \mathbb{E}_{\mathbb{P}} \left[\prod_{i=1}^{n} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i,j}}(X_{i,j})\right)}_{\text{GIP}} H_{\alpha_{i,p+1}} \left(\underbrace{\frac{(\boldsymbol{X}\beta_{1} \odot \boldsymbol{z} + \boldsymbol{X}\beta_{2} \odot (1-\boldsymbol{z}) + \boldsymbol{w})}{\sqrt{\|\beta\|_{2}^{2} + \sigma^{2}}}}_{\mathcal{N}(0,1)} \right) \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\prod_{(i,j)=(1,1)}^{(n,p+1)} (\beta_{1,j}z_{i} + \beta_{2,j}(1-z_{i}))^{\alpha_{i,j}} \cdot H_{\tilde{\alpha}_{i,p+1}}(\mathcal{N}(0,1)) \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\prod_{(i,j)=(1,1)}^{(n,p+1)} (\beta_{1,j}z_{i} + \beta_{2,j}(1-z_{i}))^{\alpha_{i,j}} \right]^{2} \end{split}$$

 $\stackrel{\text{symm.}}{pprox}$

$$\begin{split} \|L^{\leq D}\|^{2} &= \sum_{\substack{0 \leq |\alpha| \leq D \\ i=1}} \frac{1}{\alpha!} \\ \mathbb{E}_{\mathbb{P}} \left[\prod_{i=1}^{n} \underbrace{\left(\prod_{j=1}^{p} H_{\alpha_{i,j}}(X_{i,j})\right)}_{\mathsf{GIP}} H_{\alpha_{i,p+1}} \left(\underbrace{\frac{(\mathbf{X}\beta_{1} \odot \mathbf{z} + \mathbf{X}\beta_{2} \odot (1-\mathbf{z}) + \mathbf{w})}{\sqrt{\|\beta\|_{2}^{2} + \sigma^{2}}}}_{\mathcal{N}(0,1)} \right) \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D \\ i=1}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\prod_{(i,j)=(1,1)}^{(n,p+1)} (\beta_{1,j}z_{i} + \beta_{2,j}(1-z_{i}))^{\alpha_{i,j}} \cdot H_{\tilde{\alpha}_{i,p+1}}(\mathcal{N}(0,1)) \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D \\ i=1}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\prod_{(i,j)=(1,1)}^{(n,p+1)} (\beta_{1,j}z_{i} + \beta_{2,j}(1-z_{i}))^{\alpha_{i,j}} \right]^{2} \\ &\approx \sum_{\substack{0 \leq |\alpha| \leq D \\ i=1}} \frac{1}{\alpha!} \mathbb{E}_{\mathbb{P}} \left[\langle \beta_{1}^{(1)}, \beta_{1}^{(2)} \rangle^{2d} \right] \end{split}$$

$$\begin{split} \|L^{\leq D}\|^{2} &= \sum_{\substack{0 \leq |\alpha| \leq D \\ i=1 \\ \ 0 \leq |\alpha| \leq D \\ \ 0 \leq |\alpha| < D \\$$

$$\mathbf{y} = \mathbf{X} eta_1 \odot \mathbf{z} + \mathbf{X} eta_2 \odot (1 - \mathbf{z}), \quad z_i \stackrel{i.i.d}{\sim} \mathsf{Bernoulli}(\phi)$$

$$\mathbf{y} = \mathbf{X} eta_1 \odot \mathbf{z} + \mathbf{X} eta_2 \odot (1 - \mathbf{z}), \quad z_i \stackrel{i.i.d}{\sim} \mathsf{Bernoulli}(\phi)$$

$$\mathcal{S}_1 := \{j \in [p] : \beta_{1,j} > 0\}$$

Proof Idea: Good News

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta}_1 \odot \mathbf{z} + \mathbf{X} \boldsymbol{\beta}_2 \odot (1 - \mathbf{z}), \quad z_i \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$

 $\mathcal{S}_1 := \{j \in [p] : \beta_{1,j} > 0\}$

[BAHSWZ22]:

$$\mathbf{CORR}(\boldsymbol{X}, \boldsymbol{y}) := \left\{ j \in [p] : \left| \frac{\langle \boldsymbol{X}_j, \boldsymbol{y} \rangle}{\|\boldsymbol{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2) \log 2p} \right\}$$

Proof Idea: Good News

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta}_1 \odot \mathbf{z} + \mathbf{X} \boldsymbol{\beta}_2 \odot (1 - \mathbf{z}), \quad z_i \stackrel{i.i.d}{\sim} \mathsf{Bernoulli}(\phi)$$

 $\mathcal{S}_1 := \{j \in [p] : \beta_{1,j} > 0\}$

[BAHSWZ22]:

$$CORR(\boldsymbol{X}, \boldsymbol{y}) := \left\{ j \in [p] : \left| \frac{\langle \boldsymbol{X}_j, \boldsymbol{y} \rangle}{\|\boldsymbol{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2) \log 2p} \right\}$$
$$u_j := \frac{\langle \boldsymbol{X}_j, \boldsymbol{y} \rangle}{\|\boldsymbol{y}\|_2}$$

$$\mathbf{y} = \mathbf{X}\beta_1 \odot \mathbf{z} + \mathbf{X}\beta_2 \odot (1 - \mathbf{z}), \quad \mathbf{z} \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$
$$\mathbf{CORR}(\mathbf{X}, \mathbf{y}) := \left\{ j \in [p] : \left| \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2)\log 2p} \right\}$$
$$u_j := \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2}$$

$$\mathbf{y} = \mathbf{X}\beta_1 \odot \mathbf{z} + \mathbf{X}\beta_2 \odot (1 - \mathbf{z}), \quad \mathbf{z} \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$
$$\mathbf{CORR}(\mathbf{X}, \mathbf{y}) := \left\{ j \in [p] : \left| \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2)\log 2p} \right\}$$
$$u_j := \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2}$$

$$j \in (\mathcal{S}_1 \cup \mathcal{S}_2)^\complement : u_j \overset{i.i.d}{\sim} \mathcal{N}(0,1)$$
$$\mathbf{y} = \mathbf{X}\beta_1 \odot \mathbf{z} + \mathbf{X}\beta_2 \odot (1 - \mathbf{z}), \quad \mathbf{z} \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$
$$\mathbf{CORR}(\mathbf{X}, \mathbf{y}) := \left\{ j \in [p] : \left| \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2)\log 2p} \right\}$$
$$u_j := \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2}$$

$$j \in (\mathcal{S}_1 \cup \mathcal{S}_2)^\complement : u_j \overset{i.i.d}{\sim} \mathcal{N}(0,1)$$

$$\max_{j\in[p]} u_j < \sqrt{2(1+\epsilon/2)\log 2p}$$

$$\mathbf{y} = \mathbf{X}\beta_1 \odot \mathbf{z} + \mathbf{X}\beta_2 \odot (1 - \mathbf{z}), \quad \mathbf{z} \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$
$$\mathbf{CORR}(\mathbf{X}, \mathbf{y}) := \left\{ j \in [p] : \left| \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2)\log 2p} \right\}$$
$$u_j := \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2}$$

 $j \in \mathcal{S}_1 \cap \mathcal{S}_2$:

$$\mathbb{E}\left[\boldsymbol{X}_{j,i}|y_i, \boldsymbol{\beta}_1, \boldsymbol{z}_i = 1\right] = \frac{y_i \cdot \boldsymbol{\beta}_{1,j}}{\|\boldsymbol{\beta}_1\|_2^2 + \sigma^2}$$

$$\mathbf{y} = \mathbf{X}\beta_1 \odot \mathbf{z} + \mathbf{X}\beta_2 \odot (1 - \mathbf{z}), \quad \mathbf{z} \stackrel{i.i.d}{\sim} \text{Bernoulli}(\phi)$$
$$\mathbf{CORR}(\mathbf{X}, \mathbf{y}) := \left\{ j \in [p] : \left| \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2} \right| \ge \sqrt{2(1 + \epsilon/2)\log 2p} \right\}$$
$$u_j := \frac{\langle \mathbf{X}_j, \mathbf{y} \rangle}{\|\mathbf{y}\|_2}$$

 $j \in \mathcal{S}_1 \cap \mathcal{S}_2$:

$$\mathbb{E} \left[\mathbf{X}_{j,i} | y_i, \beta_1, \mathbf{z}_i = 1 \right] = \frac{y_i \cdot \beta_{1,j}}{\|\beta_1\|_2^2 + \sigma^2}$$
$$\mathbb{E} \left[u_j \mid \mathbf{y}, \mathbf{z}, \beta_1, \beta_2 \right] = \frac{\|\mathbf{y}_{\{z=1\}}\|_2^2 \beta_{1,j} + \|\mathbf{y}_{\{z=0\}}\|_2^2 \beta_{2,j}}{\|\mathbf{y}\|_2 (\|\beta\|_2^2 + \sigma^2)}$$

$$\mathbb{E}[u_j \mid \mathbf{y}, \mathbf{z}, \beta_1, \beta_2] = \frac{\|\mathbf{y}_{\{\mathbf{z}=1\}}\|_2^2 \beta_{1,j} + \|\mathbf{y}_{\{\mathbf{z}=0\}}\|_2^2 \beta_{2,j}}{\|\mathbf{y}\|_2 (\|\beta\|_2^2 + \sigma^2)}$$

$$\mathbb{E}[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \beta_{1}, \beta_{2}] = \frac{\|\boldsymbol{y}_{\{\boldsymbol{z}=1\}}\|_{2}^{2}\beta_{1,j} + \|\boldsymbol{y}_{\{\boldsymbol{z}=0\}}\|_{2}^{2}\beta_{2,j}}{\|\boldsymbol{y}\|_{2}(\|\boldsymbol{\beta}\|_{2}^{2} + \sigma^{2})}$$
$$\|\boldsymbol{y}\|_{2} \approx \sqrt{n(\|\boldsymbol{\beta}\|_{2}^{2} + \sigma^{2})}$$

$$\mathbb{E}[u_{j} \mid \boldsymbol{y}, \boldsymbol{z}, \beta_{1}, \beta_{2}] = \frac{\|\boldsymbol{y}_{\{\boldsymbol{z}=1\}}\|_{2}^{2}\beta_{1,j} + \|\boldsymbol{y}_{\{\boldsymbol{z}=0\}}\|_{2}^{2}\beta_{2,j}}{\|\boldsymbol{y}\|_{2}(\|\boldsymbol{\beta}\|_{2}^{2} + \sigma^{2})}$$
$$\|\boldsymbol{y}\|_{2} \approx \sqrt{n(\|\boldsymbol{\beta}\|_{2}^{2} + \sigma^{2})}$$

$$u_{j} \approx \frac{\phi n(\|\beta\|_{2}^{2} + \sigma^{2})\beta_{1,j} + (1 - \phi)n(\|\beta\|_{2}^{2} + \sigma^{2})\beta_{2,j}}{\sqrt{n(\|\beta\|_{2}^{2} + \sigma^{2})}(\|\beta\|_{2}^{2} + \sigma^{2})}$$

$$\mathbb{E} [u_j \mid \mathbf{y}, \mathbf{z}, \beta_1, \beta_2] = \frac{\|\mathbf{y}_{\{\mathbf{z}=1\}}\|_2^2 \beta_{1,j} + \|\mathbf{y}_{\{\mathbf{z}=0\}}\|_2^2 \beta_{2,j}}{\|\mathbf{y}\|_2 (\|\beta\|_2^2 + \sigma^2)}$$
$$\|\mathbf{y}\|_2 \approx \sqrt{n(\|\beta\|_2^2 + \sigma^2)}$$

$$u_{j} \approx \frac{\phi n(\|\beta\|_{2}^{2} + \sigma^{2})\beta_{1,j} + (1 - \phi)n(\|\beta\|_{2}^{2} + \sigma^{2})\beta_{2,j}}{\sqrt{n(\|\beta\|_{2}^{2} + \sigma^{2})}(\|\beta\|_{2}^{2} + \sigma^{2})}$$
$$= \sqrt{\frac{n}{\|\beta\|_{2}^{2} + \sigma^{2}}}(\phi\beta_{1,j} + (1 - \phi)\beta_{2,j})$$

$$\mathbb{E}[u_j \mid \mathbf{y}, \mathbf{z}, \beta_1, \beta_2] = \frac{\|\mathbf{y}_{\{\mathbf{z}=1\}}\|_2^2 \beta_{1,j} + \|\mathbf{y}_{\{\mathbf{z}=0\}}\|_2^2 \beta_{2,j}}{\|\mathbf{y}\|_2 (\|\beta\|_2^2 + \sigma^2)}$$
$$\|\mathbf{y}\|_2 \approx \sqrt{n(\|\beta\|_2^2 + \sigma^2)}$$

$$\begin{split} u_{j} &\approx \frac{\phi n(\|\beta\|_{2}^{2} + \sigma^{2})\beta_{1,j} + (1 - \phi)n(\|\beta\|_{2}^{2} + \sigma^{2})\beta_{2,j}}{\sqrt{n(\|\beta\|_{2}^{2} + \sigma^{2})}(\|\beta\|_{2}^{2} + \sigma^{2})} \\ &= \sqrt{\frac{n}{\|\beta\|_{2}^{2} + \sigma^{2}}}(\phi\beta_{1,j} + (1 - \phi)\beta_{2,j}) \\ &\stackrel{n = \tilde{\Omega}(k)}{>} \sqrt{2(1 + \epsilon/2)\log 2p}. \end{split}$$

- Narrow symmetric case: $n = \tilde{\Omega}(k^2)$
- Broad non-symmetric case: $n = \tilde{\Omega}(k)$

Future

$\circ~$ Sub-exp algorithms for <code>MSLR</code>, Sparse Phase Retrieval

Future

- $\circ~$ Sub-exp algorithms for <code>MSLR</code>, Sparse Phase Retrieval
- Adversarial instances of "robust" inference are mixtures, ex: Robust Mean Est., Robust Lin Reg [DK23, BB20]

Future

Sub-exp algorithms for MSLR, Sparse Phase Retrieval

 Adversarial instances of "robust" inference are mixtures, ex: Robust Mean Est., Robust Lin Reg [DK23, BB20]

Eigenspace Computation

Compute the principal subspace of a symmetric matrix.

 $\min_{\mathbf{X}^* \mathbf{X} = \mathbf{I}} - \frac{1}{2} \operatorname{trace} [\mathbf{X}^* \mathbf{A} \mathbf{X}].$

Symmetry: $X \mapsto XR$ $\mathbb{G} = O(r)$

Generalized Phase Retrieval

Recover a complex vector \mathbf{x}_o from magnitude measurements $\mathbf{y} = |\mathbf{A}\mathbf{x}_o|$.

 $\min_{x} \frac{1}{2} \|y^2 - |Ax|^2\|_2^2.$

Symmetry: $\mathbf{x} \mapsto \mathbf{x}e^{i\phi}$ $\mathbb{G} = \mathbb{S}^1 \cong O(2)$

Matrix Recovery

Recover a low-rank matrix $X = UV^*$ from incomplete/corrupted observations

 $\min_{\boldsymbol{U},\boldsymbol{V}} \mathcal{L}(\boldsymbol{Y} - \mathcal{A}[\boldsymbol{U}\boldsymbol{V}^*]) + \rho(\boldsymbol{U},\boldsymbol{V}).$

Symmetry: $(U, V) \mapsto (U\Gamma, V\Gamma^{-*})$ $\mathbb{G} = \mathsf{GL}(r) \text{ or } \mathbb{G} = \mathsf{O}(r)$

[WM22]

Goal: Hypothesis Test between two distributions with o(1) error:

- Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $z \sim \mathbb{P}_p$

Compute

$$\max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} \qquad \frac{\text{mean in } \mathbb{P}}{\text{fluctuations in } \mathbb{Q}}$$

Goal: Hypothesis Test between two distributions with o(1) error:

- \circ Null model (pure noise) $z \sim \mathbb{Q}_p$
- \circ Planted model (with "signal") $z \sim \mathbb{P}_p$

Can we find a low-degree polynomial f(z) that is big for $z \sim \mathbb{P}$ and small for $z \sim \mathbb{Q}$?

Compute

$$\max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} \qquad \frac{\text{mean in } \mathbb{P}}{\text{fluctuations in } \mathbb{Q}}$$

$$\max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{P}}[f(\boldsymbol{z})]}{\sqrt{\mathbb{E}_{\boldsymbol{z} \sim \mathbb{Q}}[f(\boldsymbol{z})^2]}}$$

$$\max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} = \max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{Q}}[Lf(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}}$$

 $L=\frac{d\mathbb{P}}{d\mathbb{Q}}$

$$\max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} = \max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{Q}}[Lf(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} = \max_{f \deg D} \frac{\langle L, f \rangle}{\|f\|}$$

 $L = \frac{d\mathbb{P}}{d\mathbb{Q}}$ $\langle f, g \rangle := \mathbb{E}_{z \sim \mathbb{Q}}[f(z)g(z)]$

$$\max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{P}}[f(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} = \max_{f \deg D} \frac{\mathbb{E}_{z \sim \mathbb{Q}}[Lf(z)]}{\sqrt{\mathbb{E}_{z \sim \mathbb{Q}}[f(z)^2]}} = \max_{f \deg D} \frac{\langle L, f \rangle}{\|f\|} = \|L^{\leq D}\|$$

 $L = \frac{d\mathbb{P}}{d\mathbb{Q}}$ $\langle f, g \rangle := \mathbb{E}_{z \sim \mathbb{Q}}[f(z)g(z)]$

Informal. [H18, CGHWZ22] Assume "sufficiently nice" distributions \mathbb{P} , \mathbb{Q} . If $||L^{\leq D}|| = O(1)$ for some $D = \omega(\log p)$, then algorithms require runtime $\exp(\tilde{\Omega}(D))$ to distinguish \mathbb{P} from \mathbb{Q} .

$$y_i = \begin{cases} \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with indep. prob. } 1/2 \\ -\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle + w_i, & \text{with indep. prob. } 1/2 \end{cases}$$

Under
$$\mathbb{P}$$
, observe $\mathbf{x}_i \overset{i.i.d}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, and y_i as above.
Under \mathbb{Q} , observe $(y_i, \mathbf{x}_i) \overset{i.i.d}{\sim} \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} (\|\beta_1\|_2^2 + \sigma^2) & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_p \end{bmatrix} \right)$.

Goal: Test whether $(y_i, \mathbf{x}_i)_{i \in [n]}$ came from \mathbb{P} or from \mathbb{Q} , with vanishing error probability as $p \to \infty$.

$$y_i = \pm \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle$$

$$y_i = \pm \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle \stackrel{|\cdot|}{\longleftarrow} |y_i| = |\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle|$$

$$y_i = \pm \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle \stackrel{|\cdot|}{\longleftarrow} |y_i| = |\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle|$$

Corollary. (Conditional on LDC) For $k = o(\sqrt{p})$ and $k \leq n \leq k^2$, runtime exp $\left(\frac{k^2}{n}\right)$ is required to solve a detection variant of Sparse Phase Retrieval.

$$y_i = \pm \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle \stackrel{|\cdot|}{\longleftarrow} |y_i| = |\langle \mathbf{x}_i, \boldsymbol{\beta} \rangle|$$

Corollary. (Conditional on LDC) For $k = o(\sqrt{p})$ and $k \leq n \leq k^2$, runtime exp $\left(\frac{k^2}{n}\right)$ is required to solve a detection variant of Sparse Phase Retrieval.

 \implies Provides rigorous evidence for computational hardness of Sparse Phase Retrieval when $n = \tilde{o}(k^2)!$