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Computational Barriers

Failure of efficient families: MCMC, AMP, Stat Query

[BMNW22, GJ19, BBHLS21, . . . ]

Average Case Reductions [BB20, BR13, . . . ]

Statistical Physics [DKMZ11, GMZ22, . . . ]

Low-Degree Conjecture [H18]:

polynomials of degree log (dimension) w.r.t input

⇐⇒ poly-time algorithms
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Mixed Sparse Linear Regression (MSLR)

Bad News

Good News

Proof
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Mixed Linear Regression

yi =

 ⟨xi , β1 ⟩+ wi , with indep. prob. ϕ

⟨xi , β2 ⟩+ wi , with indep. prob. 1− ϕ

◦ n observations (yi , xi)i∈[n]
◦ xi ∈ Rp covariates

◦ β1,β2 ∈ Rp

◦ wi ∈ R noise

Goal: Recover β1 , β2 w.h.p as p → ∞, given only (yi , xi )i∈[n]
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Applications: Health Care [IHHM’22], Music Perception [VT’02],

Market Segmentation [WK’00], . . .

12



Model Assumptions

yi =

 ⟨xi , β1 ⟩+ wi , with indep. prob. ϕ

⟨xi , β2 ⟩+ wi , with indep. prob. 1− ϕ

◦ n << p

◦ xi
i .i .d∼ N (0, Ip)

◦ wi
i .i .d∼ N (0, σ2)

◦ ∥β1∥0 = ∥β2∥0 = k << p

◦ ∥β1∥22 = ∥β2∥22 = Θ(k)

◦ SNR = ∥β1∥22
σ2
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Mixed Sparse Linear Regression

SNR = Θ̃(kγ)
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Extreme Cases

yi =

{
⟨xi ,β1⟩+ wi , with prob. ϕ

⟨xi ,β2⟩+ wi , with prob. 1− ϕ

◦ ϕ = 1: Linear Regression

yi = ⟨xi ,β⟩+ wi

◦ β1 = −β2, ϕ = 1/2: Symmetric Mixed Linear Regression

yi =

{
⟨xi ,β⟩+ wi , with prob. 1/2

−⟨xi ,β⟩+ wi , with prob. 1/2
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Main Results: Bad News

Theorem. For k = o(
√
p) and k ≪ n ≪ k2, analytic polynomials

of degree less than k2

n
cannot solve a hypothesis testing variant of

Symmetric Mixed Linear Regression.

⇓
Low-Degree Conjecture [H18] + Reduction to Recovery

⇓

Corollary. For k = o(
√
p) and k ≪ n ≪ k2, any randomized

algorithm requires runtime exp
(
Ω̃
(
k2

n

))
to exactly recover β1,β2

in Symmetric Mixed Linear Regression.

This runtime is super-polynomial in the input!
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Smooth Tradeoff

Corollary. For k = o(
√
p) and k ≪ n ≪ k2,

any randomized algorithm requires runtime exp

(
Ω̃

(
k2

n

))
to

exactly recover β1,β2 in Mixed Sparse Linear Regression.

↑ Sample size n
Low-Degree Conjecture [H’18]⇐===============⇒ ↓ Runtime exp

(
k2

n

)

Reminiscent of Sparse PCA [DKWB22]:

Recover k-sparse x from yi
i .i .d∼ N (0, Ip + βxxT ), n

p = Θ(1)

↑ Sample size n
Low-Degree Conjecture [H’18]⇐===============⇒ ↓ Runtime exp

(
k2

n

)
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Implications

Symmetric Mixed Linear Regression

yi =

{
⟨xi ,β⟩+ wi , with prob. 1/2

−⟨xi ,β⟩+ wi , with prob. 1/2

Symmetry : β 7→ ±β

7.1 Introduction 273

Nonconvex Problems with Rotational Symmetries

Eigenspace Computation

minX∗X=I − 1
2

trace [X∗AX].

Compute the principal subspace
of a symmetric matrix.

Symmetry: X 7→XR

G = O(r)

Generalized Phase Retrieval

minx
1
2
‖y2 − |Ax|2‖22.

Recover a complex vector xo from
magnitude measurements y = |Axo|.

Symmetry: x 7→ xeiφ

G = S1 ∼= O(2)

Matrix Recovery

Recover a low-rank matrix X = UV ∗

from incomplete/corrupted observations

minU,V L(Y −A[UV ∗]) + ρ(U ,V ).

Symmetry: (U ,V ) 7→ (UΓ,V Γ−∗)

G = GL(r) or G = O(r)

Figure 7.4 Three examples of nonconvex optimization problems with rotational
symmetries (Section 7.2). Each of these three tasks can be reduced to optimization
problems in various ways; for each, we give a representative formulation and discuss
its symmetries.

with negative curvature directions feeding into negative curvature directions, a

property which appears to prevent first order methods from stagnating [GBW19].

Before we embark, a few disclaimers are in order. First, slogans 1 and 2 are

only slogans. As we will see, they have been established rigorously for specific

problems under specific (restrictive) technical hypotheses. We hope to convey a

sense of the beauty and robustness of certain observed phenomena in optimiza-

tion, while also making clear that the existing mathematics supporting these

claims is, in places, lacking uniformity and simplicity. There is a need for more

unified analysis and better technical tools. We highlight some potential avenues

for this in Section 7.4. The second, more fundamental, disclaimer is that not

all symmetric problems have benign global geometry. It is easy to construct

counterexamples. Nevertheless, as we will see, symmetry provides a lens through

which one can understand the geometric properties that enable efficient opti-

mization for our particular family of problems. Moreover, when we study these

problems through their symmetries, common structures and common intuitions

emerge: problems with similar symmetries exhibit similar geometric properties

and behaviors.

7.1.3 A Taxonomy of Symmetric Nonconvex Problems

In this chapter, we identify two families of symmetric nonconvex problems, which

exhibit similar geometric characteristics.

• The first family of problems exhibit continuous rotational symmetries: the

Sparse Phase Retrieval

yi = |⟨xi ,β⟩|+ wi
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Sparse Phase Retrieval

SNR = Θ̃(kγ)

n = Θ̃(kα)

− 1
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poly-time algorithms
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Gap of order k?

Computationally Hard
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(smooth tradeoff)
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Main Results: Good News

Non-Symmetric Mixed Linear Regression

β1 ̸= −β2 or ϕ ̸= 1

2

22



Non-Symmetric Mixed Linear Regression
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More Good News

Non-Symmetric Mixed Linear Regression

β1 ̸= −β2 or ϕ ̸= 1
2

Theorem. Provided n = Ω̃(k), the CORR algorithm recovers the

joint support of β1,β2 w.h.p.

Translates to full recovery when combined with dense algorithms

[YCS14, CYC14]
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Proof Idea
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The Low-Degree Method [HS17]

Hypothesis Test between two distributions with o(1) error:

◦ Null model (pure noise) z ∼Qp

◦ Planted model (with “signal”) z ∼ Pp

L(z) :=
dP
dQ

(z), ⟨f , g⟩ := Ez∼Qf (z)g(z), ∥f ∥2 := ⟨f , f ⟩

Lemma. [MRZ15] If ∥L∥ = O(1) as p → ∞, then impossible to

distinguish P from Q with o(1) error.

Low-Deg. Conjecture. [H18, CGHWZ22] If ∥L≤D∥ =

O(1) for some D = ω(log p), then any algorithm distinguish-

ing P from Q with o(1) error requires runtime exp(Ω̃(D)).
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L(z) :=
dP
dQ

(z), ⟨f , g⟩ := Ez∼Qf (z)g(z), ∥f ∥2 := ⟨f , f ⟩

Proposition. [KWB19] The unique solution f ∗ to the

optimization problem

max
f deg D

Ez∼Pf (z)
Ez∼Q[f (z)2]

= max
f deg D

⟨L, f ⟩
∥f ∥2

is the normalized LDLR f ∗ = L≤D/∥L≤D∥. The value is ∥L≤D∥.
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Detection Variant

yi =

{
⟨xi ,β1⟩+ wi , with indep. prob. ϕ

⟨xi ,β2⟩+ wi , with indep. prob. 1− ϕ

Under P, observe xi
i .i .d∼ N (0, Ip), and yi as above.

Under Q, observe (yi , xi )
i .i .d∼ N

(
0,

[
(∥β1∥22 + σ2) 0

0 Ip

])
.

Goal: Test whether (yi , xi )i∈[n] came from P or from Q, with o(1)

error as p → ∞.
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Proof Notation

y = Xβ1 ⊙ z + Xβ2 ⊙ (1− z) + w , zi
i .i .d∼ Bernoulli(ϕ)

Xj : column, xi : row

α ∈ Rn×(p+1) : |α| =
∑

i ,j αi ,j ,α! =
∏

i ,j αi ,j !
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Goal: compute ∥L≤D∥2

Input: (y ,X ) ∈ Rn×(p+1)

orthonormal basis for poly. deg D w.r.t Q

1√
α!

Hα(u) =
1√
α!

n∏
i=1

p+1∏
j=1

Hαi,j (ui ,j), α,u ∈ Rn×(p+1)

30
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∥L≤D∥2

=
∑

0≤|α|≤D

1

α!
⟨L,Hα⟩2

=
∑

0≤|α|≤D

1

α!
EQ[L(y ,X )Hα(X , y)]2

=
∑

0≤|α|≤D

1

α!
EP[Hα(X , y)]2

=
∑

0≤|α|≤D

1

α!

EP


n∏

i=1

 p∏
j=1

Hαi,j (Xi,j)


︸ ︷︷ ︸

GIP

Hαi,p+1

 (Xβ1 ⊙ z + Xβ2 ⊙ (1− z) + w)√
∥β∥22 + σ2︸ ︷︷ ︸
N (0,1)



2
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Proof Idea: Good News

y = Xβ1 ⊙ z + Xβ2 ⊙ (1− z), zi
i .i .d∼ Bernoulli(ϕ)

S1 := {j ∈ [p] : β1,j > 0}

[BAHSWZ22]:

CORR(X , y) :=
{
j ∈ [p] :

∣∣∣∣⟨Xj , y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

}

uj :=
⟨Xj , y⟩
∥y∥2
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∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

}
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⟨Xj , y⟩
∥y∥2

j ∈ (S1 ∪ S2)
∁ : uj

i .i .d∼ N (0, 1)

max
j∈[p]

uj <
√
2(1 + ϵ/2) log 2p
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E [Xj ,i |yi ,β1, zi = 1] =
yi · β1,j

∥β1∥22 + σ2

E [uj | y , z ,β1,β2] =
∥y{z=1}∥22β1,j + ∥y{z=0}∥22β2,j
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∥y∥2(∥β∥22 + σ2)

∥y∥2 ≈
√
n(∥β∥22 + σ2)

uj ≈
ϕn(∥β∥22 + σ2)β1,j + (1− ϕ)n(∥β∥22 + σ2)β2,j√

n(∥β∥22 + σ2)(∥β∥22 + σ2)

=

√
n

∥β∥22 + σ2
(ϕβ1,j + (1− ϕ)β2,j)

n=Ω̃(k)
>

√
2(1 + ϵ/2) log 2p.
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Summary

◦ Narrow symmetric case: n = Ω̃(k2)

◦ Broad non-symmetric case: n = Ω̃(k)
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Future

◦ Sub-exp algorithms for MSLR, Sparse Phase Retrieval

◦ Adversarial instances of “robust” inference are mixtures, ex:

Robust Mean Est., Robust Lin Reg [DK23, BB20]

7.1 Introduction 273

Nonconvex Problems with Rotational Symmetries

Eigenspace Computation

minX∗X=I − 1
2

trace [X∗AX].

Compute the principal subspace
of a symmetric matrix.

Symmetry: X 7→XR

G = O(r)

Generalized Phase Retrieval

minx
1
2
‖y2 − |Ax|2‖22.

Recover a complex vector xo from
magnitude measurements y = |Axo|.

Symmetry: x 7→ xeiφ

G = S1 ∼= O(2)

Matrix Recovery

Recover a low-rank matrix X = UV ∗

from incomplete/corrupted observations

minU,V L(Y −A[UV ∗]) + ρ(U ,V ).

Symmetry: (U ,V ) 7→ (UΓ,V Γ−∗)

G = GL(r) or G = O(r)

Figure 7.4 Three examples of nonconvex optimization problems with rotational
symmetries (Section 7.2). Each of these three tasks can be reduced to optimization
problems in various ways; for each, we give a representative formulation and discuss
its symmetries.

with negative curvature directions feeding into negative curvature directions, a

property which appears to prevent first order methods from stagnating [GBW19].

Before we embark, a few disclaimers are in order. First, slogans 1 and 2 are

only slogans. As we will see, they have been established rigorously for specific

problems under specific (restrictive) technical hypotheses. We hope to convey a

sense of the beauty and robustness of certain observed phenomena in optimiza-

tion, while also making clear that the existing mathematics supporting these

claims is, in places, lacking uniformity and simplicity. There is a need for more

unified analysis and better technical tools. We highlight some potential avenues

for this in Section 7.4. The second, more fundamental, disclaimer is that not

all symmetric problems have benign global geometry. It is easy to construct

counterexamples. Nevertheless, as we will see, symmetry provides a lens through

which one can understand the geometric properties that enable efficient opti-

mization for our particular family of problems. Moreover, when we study these

problems through their symmetries, common structures and common intuitions

emerge: problems with similar symmetries exhibit similar geometric properties

and behaviors.

7.1.3 A Taxonomy of Symmetric Nonconvex Problems

In this chapter, we identify two families of symmetric nonconvex problems, which

exhibit similar geometric characteristics.

• The first family of problems exhibit continuous rotational symmetries: the

[WM22]
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with negative curvature directions feeding into negative curvature directions, a

property which appears to prevent first order methods from stagnating [GBW19].

Before we embark, a few disclaimers are in order. First, slogans 1 and 2 are

only slogans. As we will see, they have been established rigorously for specific

problems under specific (restrictive) technical hypotheses. We hope to convey a

sense of the beauty and robustness of certain observed phenomena in optimiza-

tion, while also making clear that the existing mathematics supporting these

claims is, in places, lacking uniformity and simplicity. There is a need for more

unified analysis and better technical tools. We highlight some potential avenues

for this in Section 7.4. The second, more fundamental, disclaimer is that not

all symmetric problems have benign global geometry. It is easy to construct

counterexamples. Nevertheless, as we will see, symmetry provides a lens through

which one can understand the geometric properties that enable efficient opti-

mization for our particular family of problems. Moreover, when we study these

problems through their symmetries, common structures and common intuitions

emerge: problems with similar symmetries exhibit similar geometric properties

and behaviors.

7.1.3 A Taxonomy of Symmetric Nonconvex Problems

In this chapter, we identify two families of symmetric nonconvex problems, which

exhibit similar geometric characteristics.

• The first family of problems exhibit continuous rotational symmetries: the

[WM22]
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Future

◦ Sub-exp algorithms for MSLR, Sparse Phase Retrieval

◦ Adversarial instances of “robust” inference are mixtures, ex:

Robust Mean Est., Robust Lin Reg [DK23, BB20]
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Appendix: The Low-Degree Method [HS17]

Goal: Hypothesis Test between two distributions with o(1) error:

◦ Null model (pure noise) z ∼Qp

◦ Planted model (with “signal”) z ∼ Pp

Can we find a low-degree polynomial f (z) that is big for z ∼ P and

small for z ∼Q?

Compute

max
f deg D

Ez∼P[f (z)]√
Ez∼Q[f (z)2]

mean in P
fluctuations in Q
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Appendix: The Low-Degree Method [HS17]

max
f deg D

Ez∼P[f (z)]√
Ez∼Q[f (z)2]

= max
f deg D

Ez∼Q[Lf (z)]√
Ez∼Q[f (z)2]

= max
f deg D

⟨L, f ⟩
∥f ∥

= ∥L≤D∥

L =
dP
dQ

⟨f , g⟩ := Ez∼Q[f (z)g(z)]
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Appendix: The Low-Degree Conjecture

Informal. [H18, CGHWZ22] Assume “sufficiently nice”

distributions P, Q. If ∥L≤D∥ = O(1) for some D = ω(log p), then

algorithms require runtime exp(Ω̃(D)) to distinguish P from Q.
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Symmetric Mixed Linear Detection

yi =

{
⟨xi ,β⟩+ wi , with indep. prob. 1/2

−⟨xi ,β⟩+ wi , with indep. prob. 1/2

Under P, observe xi
i .i .d∼ N (0, Ip), and yi as above.

Under Q, observe (yi , xi )
i .i .d∼ N

(
0,

[
(∥β1∥22 + σ2) 0

0 Ip

])
.

Goal: Test whether (yi , xi )i∈[n] came from P or from Q, with

vanishing error probability as p → ∞.
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More Bad News

Symmetric Mixed Linear Regression: SNR = ∞

yi = ±⟨xi ,β⟩

|·|⇐= |yi | = |⟨xi ,β⟩|

Corollary. (Conditional on LDC) For k = o(
√
p) and k ≲ n ≲ k2,

runtime exp
(
k2

n

)
is required to solve a detection variant of Sparse

Phase Retrieval.

=⇒ Provides rigorous evidence for computational hardness of

Sparse Phase Retrieval when n = õ(k2)!
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