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Abstract

Probabilistic electricity price forecasting (PEPF) has become a crucial com-

ponent for energy systems planning and decision making in this day and age.

Point predictions are unable to quantify the growing uncertainty around the in-

troduction of renewable energies and smart technologies, so PEPF has become

an integral step in the decision making pipeline of utilities, generators and other

market participants. We empirically motivate the Gaussian Process model as

principled, interpretable, and flexible probabilistic electricity price forecasting

model for the short-term (1-2 hours) and medium term (1-2 days) prediction

regimes. Following novel guidelines for PEPF described in [1], we construct

a Gaussian Process model that performs competitively compared to current

state-of-the-art approaches on the GEFCom2014 competition dataset, all while

preserving interpretability and with proper uncertainty quantification in mind.

Keywords: Probabilistic, Forecasting

1. Introduction

Competitive electricity markets today are the main government-unregulated

platform for reliable electricity trading worldwide. Electricity price forecast-

ing is a fundamental tool for the operation of grid producers, consumers, and

investors, and are essential components in the pipeline of energy companies’ de-5

cision making processes. Surveys of the literature by De Gooijer and Hyndman
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[2], concluded that point forecasts present serious limitations to the usefulness

of electricity price and load forecasts, because the uncertainty in prediction is

unaccounted for. They highlight the recent popularity of probabilistic forecast-

ing as a new avenue for risk-aware electricity price forecasting. The work was10

followed by Nowotarski and Weron’s review of PEPF (probabilistic electricity

price forecasting) [1], offering guidelines for the rigorous evaluation of prob-

abilistic models of electricity prices, also distinguishing probabilistic forecasts

as a promising reliable method of forecasting in the field going forward. The

review emphasizes that the recent introduction of smart technologies and re-15

newable generation into the grid has played a role in increasing the uncertainty

in future demand, supply, and prices of electricity. Therefore, it is expected that

electricity price forecasting with improved uncertainty assessment will play an

increasingly important role in energy systems decision making.

Consequently, there is an increasing interest in producing electricity price20

forecasts that account for uncertainties in the prediction. Probabilistic Fore-

casting involves predicting future points along with either prediction intervals

or densities. There is a growing body of literature offering probabilistic solutions

to the electricity price forecasting problem but, to the best of our knowledge,

work evaluating probabilistic medium-term forecasting models on the reference25

dataset and metrics outlined in [1] is lacking. Moreover, most works simplify

the framework and simply predict 24 hourly marginal distributions, rather than

their joint distribution [1], which eliminates information on price correlations

across different hours. It is important to note, however, that this problem

has already been addressed in other areas of the energy systems probabilistic30

forecasting literature, such as wind forecasting [3]. Our work allows for the

expressive and intuitive construction of prior covariance structure among data

points, along with calibrated uncertainty analysis past the prediction interval

regime. This is thanks to the chosen Bayesian reasoning framework in statistics

which allows for probabilistic model design with built-in methods for quantify-35

ing uncertainty, a framework we further explore in the Bayesian Formalism for

Prediction section. We propose Gaussian Processes (GPs), principled Bayesian
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probabilistic models with which one can do inference on future data, as a solu-

tion to the short (1-2 hours ahead) and medium (1-2 days ahead) term prob-

abilistic forecasting of electricity prices. This is, to the best of our knowledge,40

the first presentation of such a solution to the probabilistic EPF problem. In

what follows, we motivate GPs as simple and principled probabilistic forecasting

models that are able to : a) return calibrated uncertainties through Bayesian

inference, b) allow for intuitive model interpretation through a decomposition of

prediction, c) easily incorporate expert knowledge through kernel design. Our45

code is publicly available at codeisnotpublicyet. We begin by outlining rele-

vant work in the field, and proceed with an overview of the Bayesian Formalism

for probabilistic prediction. This is followed by an introduction to Gaussian

Processes, including their application in a decision making example. After this

exposition, we outline the dataset and evaluation metrics used to evaluate our50

GP models, along with a guide for designing our GP model in the PEPF set-

ting. We conclude with experimental results, and a further look ahead into the

applications of GPs to PEPF.

2. Related Work

Numerous methods for probabilistic EPF have been proposed, with impres-55

sive empirical performance on arbitrary datasets as measured by specific eval-

uation metrics. Already existing models range from ARMA models to compu-

tational neural networks and random forests, which demonstrate notable per-

formance on short-term (1-2 hours ahead) and medium-term (1-2 days ahead)

forecasting. We start with a review of the state-of-the-art in probabilistic elec-60

tricity price forecasting.

The leading survey on probabilistic EPF [1] outlines the literature’s state-of-

the-art probabilistic EPF techniques and motivates the need for an all-encompassing

solution to the problem. It also establishes the first empirically motivated guide-

lines for the evaluation of probabilistic EPF models, favouring models which65

“maximize sharpness subject to reliability” (see Evaluation Metrics). The pa-
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per constructs much needed guidelines for PEPF model evaluation based on the

Global Energy Foreacasting Competition (GEFCom2014) [4] data, which fo-

cused on probabilistic load, price, wind, and solar forecasting. These guidelines

are the ones we will follow in this paper.70

The survey in [1] also highlights two models that performed best in terms

of the Unconditional Coverage and Average Coverage Error metrics (UC and

ACE respectively). These models are considered baselines for comparison in

this paper. They are autoregressive and produce prediction intervals: ARX [5],

and m-ARX [6].75

Probabilistic medium-term forecasting of energy prices is a less explored

problem compared to the short-term analogue. Garćıa-Martos et al. [7] pro-

pose a dimensionality reduction model based on heteroskedastic common factors

which is able to predict one-day-ahead electricity prices with Gaussian predic-

tion intervals, but do not evaluate their prediction. This work uses nine years80

of electricity market price data to generate heteroskedastic common factors for

one-day-ahead prediction, and hence we believe it requires some adaptation in

order to be applied to our two year reference dataset containing load informa-

tion. Similarly, Alonso et al. [8] propose a prediction interval-based PEPF

method using Dynamic Factor Analysis, but only evaluate their prediction for a85

single week on a six year Spanish electricity price dataset. The work of Brusa-

ferri et al. [9] proposes a Bayesian deep learning forecasting method (which

produces probabilistic intervals), but they do not optimize the neural network

hyperparameters for prediction since the objective was to contrast the Bayesian

and frequentist frameworks in neural networks for EPF, hence this method90

could require some adaptation in order to be evaluated on the reference dataset

considered in this paper ([1]).

Gaussian Process (GP) modelling was first introduced to the electricity fore-

casting community in the form of load forecasting models such as those outlined

in [10]. Mori and Nakano [11] indicated the potential of Gaussian Processes as95

a PEPF model, but only demonstrated its effectiveness for short-term forecasts

(one hour ahead). The work also does not demonstrate the constructible and
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interpretable nature of GP modelling through kernel composition to the com-

munity. This follows from other kernel methods outlined in literature, such as

in [12], which are also short-term forecasting methods (2 hours ahead). In this100

work we present a competitive Gaussian Process model for medium-term (1 day)

PEPF evaluated on the benchmark dataset from the GEFCom2014 conference

mentioned in [1]. This is an important forecasting scenario due to the day-ahead

and real-time two settlement structure of wholesale electricity markets present

in countries such as the United States and Canada [13]. A one day ahead fore-105

cast (medium-term) is essential for estimating the difference between day-ahead

and real-time market value, a difference that can have significant effects not only

on market efficiency but also market reliability. Grid operators benefit from the

knowledge of near-future spikes in market price, and policymakers benefit from

understanding how predictable such spikes are and how they affect energy de-110

mand. Medium term market forecasts are therefore essential to the operations

of grid staff and policy makers in competitive wholesale markets around the

globe [14].

Efforts for medium-term to long-term probabilistic forecasting exist in the

PEPF literature. The work of Ziel and Steinert [15] provide a first model for115

probabilistic forecasting of prices on the scale of days to years. This was the first

paper to demonstrate the possibility of long-term forecasting, and the results

are promising based on common error measures. The paper, however, did not

evaluate their forecasts on a reference dataset, but instead served as a first

approach to tackling the medium-term to long-term PEPF problem. Gaussian120

Processes for long-term probabilistic forecasting have not been analyzed, and

could be a fruitful line of study.

3. The Bayesian Formalism for Prediction

As outlined in the introduction, uncertainty quantification has become an

increasingly important component to electricity market planning and operation,125

motivating the need for a statistical reasoning framework for which uncertainty
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quantification is a central concern. With this in mind, our statistical frame-

work is expected to output probability distributions over our predictions, and

not just point predictions. We begin by introducing the Bayesian formalism

for reasoning about uncertainty: we encode our assumptions about our data130

as probability distributions, and automatically obtain probabilistic predictions

by applying Bayes’ rule. We encourage viewing the Bayesian formalism as a

machine where the inputs are (1) prior assumptions about our data (what we

call the “prior”) and (2) the dataset itself, and our outputs are uncertainty

quantifications as distributions over yet unobserved data, such as market prices135

for the next day. In the scenario of PEPF, our prior is a distribution indicating

how the market price is expected to behave (with features such as periodicities,

regular spikes and dips), our dataset consists of the past market price and load

data, and our prediction is a distribution over the future market price (ideally

displaying similar features we added in our prior such as periodicities). This140

direct relationship between input uncertainty and output uncertainty (Bayes’

rule) allows the user to properly quantify and control uncertainty in their pre-

diction, and is hence an attractive statistical framework for conducting inference

over the electricity market. Specifically, the uncertainty in our predictions arises

directly from the assumptions applied during model building. Bayesian mod-145

els as these are ubiquitous in the machine learning and statistics communities,

as they allow users to be explicit about their lack of knowledge regarding the

data generating process, and to automatically quantify the probabilities of their

model outputs [16].

The Bayesian formalism measures model goodness of fit with the marginal150

likelihood. For input data D = {x1 . . . xn} and model M , the marginal likeli-

hood is defined as P (D|M). In words, this describes the probability of the data

if we assume that the data generating process is given by model M . The natural

preference for simpler models built into this quantity is known as Bayesian Oc-

cam’s razor [17, 18]. Because more complex models are able to describe larger155

families of data, the distribution P (D|M) naturally flattens out for models with

increasing complexity. The automatic flattening of complex distributions occurs
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due to the fact that distributions must sum to one while having increasing sup-

port. This form of implicit regularization allows for automatic model selection

based on the marginal likelihood: select models with greatest marginal likeli-160

hood over your data. Examples of such models range from simpler Bayesian

linear regression models to Bayesian neural networks (BNNs) with many pa-

rameters. Nonlinear Bayesian models are preferred for modelling PEPF data

as the market price time series often displays a non-linear relationship with

time and load. BNNs, although nonlinear, only allow for approximate inference165

past the prediction interval regime. Gaussian Processes, however, are non-linear

Bayesian models for which prior assumptions can be easily specified through the

use of mean and covariance functions. We are able to conduct exact inference

over these models, they produce analytical and closed-form distributions over

our outputs, and they are maximally uncertain about all other moments of the170

predictive distribution after we have specified the distribution mean and covari-

ance. Gaussian Processes (GPs) are hence the preferred Bayesian model for

conducting probabilistic inference over electricity market data, and we outline

the details of the model in what follows.

A Gaussian Process illustration of the natural penalization for complexity175

captued by the Bayesian Occam’s razor is demonstrated in Figure 1, where

Gaussian Processes of increasing complexity (covariance functions encoding

polynomials of higher degree) are fit to a degree 4 polynomial and selected

based on highest log marginal likelihood (logP (D|M), abbreviated as LML).

It is important to note that the Gaussian Process fit with the highest LML180

value (highest marginal likelihood) corresponds to the function space of order 4

polynomials. Bayesian implicit regularization in this case helps rule out models

of degree 5 and of degree 6 for example, which are truly overly complex for our

degree 4 polynomial data. Hence, Bayesian models are attractive models for

probabilistic electricity price forecasting because they naturally output predic-185

tive distributions and contain this characteristic implicit regularization which

helps prevent model overfitting.
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Figure 1: Gaussian Processes with covariance functions of degree ranging from 1 to 6 fit onto

data sampled from the data generating process f , where f(x) = x4 +x3−1.2x2 + 0.2x+η and

η ∼ N (0, 0.4). Log Marginal Likelihood (LML) displayed, with lower value indicating better

model fit. Gaussian Process posterior mean in purple, and 95% uncertainty interval in shaded

blue are plotted.
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4. Introduction to Gaussian Processes

The aforementioned Gaussian Process model is a principled, interpretable,

and intuitively specified Bayesian model for conducting inference and producing190

probabilistic predictions. It can be viewed as the generalization of a Gaussian

distribution in Rn to a space of functions. It allows us to place a prior (a distribu-

tion encoding our prior assumptions) over the space of functions which describe

our signal, condition on an observation, and obtain a posterior distribution over

new function points, following the Bayesian machine intuition described in the195

previous section. Fitting data with a GP entails specifying a prior mean and

covariance function or kernel (which may contain unspecified parameters called

hyperparameters), conditioning on observed data, and sometimes conducting an

optimization over the hyperparameters. After conditioning a GP on data, the

resulting Gaussian Process can be viewed as a weighted average of trained points200

according to the weights specified by the kernel. The conditioned Gaussian Pro-

cess evaluated at an arbitrary input x is therefore an average of the observed

points near x, weighted by the kernel, and forms a sort of smoothing between

points. The kernel is therefore in practice commonly used as an intuitive and

flexible way to encode our prior assumptions over the function space we are try-205

ing to model. These models come with a clear procedure for prediction: specify

prior beliefs, condition on observations, and obtain predictive distributions [19].

Proceeding with a more formal introduction useful in future sections, Gaus-

sian Process are defined as a collection of random variables any finite collection

of which follows a joint multivariate Gaussian distribution. In the context of210

this paper, Gaussian Processes modelled over time are stationary stochastic

processes (time-dependent random variables) whose values at a finite number of

time points jointly obey a Gaussian distribution. In the machine learning liter-

ature, GPs have more practically been described as distributions over functions

f(x). The technical and mathematical underpinnings of Gaussian Processes are215

outlined in Appendix 10. The principal design component of a GP is its kernel or

covariance function, which describes the assumed correlation structure between
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points in the function space. GPs fit into a family of Bayesian models called

non-parametric Bayesian models [20], where assumptions on the data generating

function space are encoded through the choice of kernel. Kernels typically take220

the form of functions over two time points (x1, x2), and tend to possess a few

hyperparameters. Philosophically, these serve to index the family of functions

described by that kernel. Examples of kernels include the Squared Exponential

(EQ) and Periodic (Per) kernels defined by the following expressions:

κEQ(xi, xj) = σ2exp

(
−‖xi − xj‖

2`2

)
(1)

κPer(xi, xj) = σ2exp

(
− 2 sin2(π(xi − xj)/p)

`2

)
(2)

where σ2, `, p are positive variance, lengthscale, and period hyperparameters225

respectively. Variance and lengthscale are examples of typical hyperparameters

present in covariance functions. The former encodes the amplitude of functions

in our function space, roughly how much our function can deviate from its mean.

The latter encodes the frequency of variation in our function space: the smaller

the lengthscale, the smaller the correlation between two points will be, and230

hence, visually, the wigglier the function space. The EQ kernel as a function

encodes an overall smoothness on the space of possible functions that describe

our data, and combined with its two hyperparameters σ2 and ` defines a family

of smooth functions of bounded variation and wiggle. The Periodic kernel with

its added p parameter encodes a smooth periodicity in the underlying data with235

period p [21].

Samples from a Gaussian Process with an EQ kernel for different settings of

hyperparameters are shown in Figure 2, along with samples of other commonly

used kernels, such as the Periodic, Squared Exponential, and Rational Quadratic

kernels, used in our experiments and further outlined in Appendix 10. Notice240

the difference in wiggliness of functions sampled with small lengthscale `, and

others sampled with large lengthscale `.
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Figure 2: Sampling functions from kernel with different hyperparameters. Heatmaps on the

right display the covariance matrix that is output by the kernel.
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Moreover, the addition and multiplication of kernels also results in a kernel.

Therefore, covariance functions can be combined through multiplication and

addition to produce more complex covariance structures. The addition of two245

kernels (κ1 and κ2) is analogous to an OR operation: two points x1 and x2 are

considered highly correlated if they are highly correlated in either κ1 OR κ2

(κ1(x1, x2) or κ2(x1, x2) is large in magnitude). Conversely, the multiplication

of two kernels is analogous to an AND operation: two points x1 and x2 are

considered highly correlated if they are highly correlated both in κ1 AND κ2250

(κ1(x1, x2) · κ2(x1, x2) is large in magnitude). With a composite kernel, the

variance hyperparameter, σ2, of each component can also be interpreted as the

relative strength of its signal.

Kernels are, therefore, a flexible and intuitive way to encode assumptions

about our function space, and Gaussian Processes are simple probabilistic mod-255

els that allow us to conduct inference given these assumptions. Gaussian Process

posteriors are typically visually demonstrated by plotting the mean and 95% un-

certainty interval around their predictive points, as demonstrated in Figures 1

and 3.

5. Decision Making Example260

In this section we present a GP-aided decision making toy problem which

motivates the need for correctly calibrated predictive uncertainties in proba-

bilistic models. It is often not enough to just output predictive distributions,

but instead predictive distributions which correctly encompass the uncertainty

in the underlying quantity to be modelled, as errors in uncertainty calibration265

can lead to significantly different decisions from automated systems, even if the

expected value is the same. This helps motivate the need for improvements over

past probabilistic electricity price forecasting models and the uncertainties they

output. In this toy example, we consider the problem of optimizing (maximiz-

ing) the Sharpe Ratio at some future point x∗ of a financial portfolio with three270

independent elements. Assuming a risk-free rate of zero for this example, the
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Sharpe ratio of a portfolio element at time t is defined as the expected return

divided by the volatility (measured by the standard deviation) of the portfolio.

The greater the value of the Sharpe ratio, the more attractive the risk-adjusted

portfolio return [22]. We define a data generating process, then compare the275

Sharpe ratio obtained by a GP with correct kernel specification (and hence

correct uncertainty calibration) to a GP with mismatched kernel specification.

Ideally we expect to observe that the Sharpe ratio, the quantity to be maxi-

mized, is greater for the GP with correct uncertainty calibration. This is meant

to reflect the impact that uncertainty calibration can have in decision making280

tasks, translating to decision making scenarios in the electricity market.

Firstly, we condition three GPs on external randomly generated data to de-

fine our data generating process, which represents three elements in a portfolio.

The external data can be obtained from our experiment code linked in the intro-

duction. The data generating process consists of three conditioned independent

GPs with the following covariance functions for GPs 1, 2, 3 respectively:

κ1 = 5 · P(MA32(` = 1), T = 1.0)

κ2 = 1 · P(MA32(` = 1), T = 1.0) + L (3)

κ2 = 0.01 · P(MA32(` = 1), T = 1.0) · L

where P is the periodicity operator outlined in [23], MA32 refers to a sta-

tionary kernel called the Matern–3/2 kernel, and L refers to the linear kernel

(outlined in Appendix 10). All data generating GPs are defined with likelihood

variance 0.01 (see Appendix 10 for an outline of the role of likelihood variance285

in GPs). The GP covariance functions for the data generating process were cre-

ated in such a way to have inherently predictable periodicities but non-trivial

uncertainty properties (the linear kernel multiplied by another kernel, for ex-

ample, causes the uncertainty of the product process to increase linearly with

time). We set our training window to be three days, and sample 15 points from290

each of the aforementioned data generating GPs within this 3 day window to

create our dataset. Our goal is then to produce predictions for the prices of each
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portfolio element at future time x∗ = 3.2 (hour 5 of day 4). We then perform

Markowitz Portfolio Optimization [24] on these three independent portfolio ele-

ment predictions to determine the best weight allocation for the elements in our295

portfolio so as to maximize the Sharpe ratio of the entire portfolio. We contrast

two probabilistic decision making systems that attempt to solve the prediction

portion of this problem for each portfolio element: one GP conditioned on the

15 sample points using the same covariance function as that of the data generat-

ing process in (3) (properly calibrated uncertainties), which we call the Ground300

Truth GP (GT), and another GP conditioned on the 15 sample points involving

covariance functions slightly different from those of the data generating process

(uncalibrated uncertainties) which we call the Mismatched GP (MM).

The covariance functions chosen for the MMs 1, 2, 3 are:

κ̄1 = 5 · P(EQ(` = 1), T = 1.0)

κ̄2 = 1 · P(EQ(` = 1), T = 1.0) + L (4)

κ̄3 = 0.01 · P(EQ(` = 1), T = 1.0) · L

respectively. Notice that the only difference between the MMs and the GTs

is that the former’s base kernel inside of the periodicity operator P is the EQ305

kernel, and the latter’s the MA32 kernel. The MA32 kernel in the data gener-

ating process encodes a space of continuous time functions that are not neces-

sarily smooth, whereas the EQ kernel induces functions with a strong degree of

smoothness throughout. We will see that such an apparently small change in the

underlying smoothness of the function space will cause a significant difference310

in our final automated Markowitz Portfolio Optimization decision.

It is observed in Figure 3 that, although the visual differences in posterior fits

are small, the GTs and MMs produce significantly different Markowitz Portfolio

decision weights. This difference in uncertainty quantification, although visually

tolerable, is enough to cause the MM to output a decision which goes against315

that of the GT: allocate more weight to element 1 and less to element 3. In a

stock investment scenario this would correspond to the decision of drastically
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switching investment confidence from one stock to another.

We conclude this example with numerical results from the Markowitz Port-

folio Optimization shown in Table 1. We display the actual Expected Returns,320

Volatility, and Sharpe Ratio for the resulting weights optimized according to the

predictions of the GTs and MMs. Since the GTs are defined according to the

true covariance functions of the underlying data generating process, they are our

measure of the prediction accuracy given the most accurate uncertainty calibra-

tion possible. It is clear that the Mismatched GPs performed worse compared325

to the Ground Truth GPs in terms of the Sharpe Ratio, and hence resulted

in a significantly less attractive risk-adjusted return. We see that the MMs

underestimates the risk for the first portfolio element due to improper uncer-

tainty calibration, resulting in a higher weight attribution to this element in the

portfolio. Rigorous uncertainty calibration in probabilistic prediction models330

is therefore of high importance as it could lead to drastic changes in decision

output and worse results on our optimization objective.
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Figure 3: Comparison between the data generating process and the Ground

Truth/Mismatched GP predictions for portfolio elements 1, 2, and 3. Y-axis: Price. Right:

Markowitz allocation of weights between the three portfolio elements for the GT and MM

processes.
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GT MM

Expected Return 52.5% 57.9%

Volatility 15.3% 24.5%

Sharpe Ratio 3.4 2.4

Table 1: Results from evaluating the Markowitz Portfolio Optimization decisions on time x∗

for the Data Generating GP (DGP), the Ground Truth GP (GT), and the Mismatched GP

(MM). It is observed that the Sharpe ratio of the MM process is the lowest of the three.

6. Dataset and Evaluation Metrics

6.1. Data

The electricity price dataset from GEFCom2014 [4] recorded 2.5 years of335

hourly electricity prices, from 2011 to 2013. For each hourly price, the data

contains the corresponding zonal load and system load, for an unspecified zone

in the power grid. The Gaussian Process model we applied to this problem uses

3-dimensional inputs, namely the time (represented by hour since first hour),

the provided Zonal load forecast (one hour ahead), and the provided System340

load forecast (one hour ahead), to forecast future prices. For the competition,

the data from June 19th 2011 to December 17th 2012 is used as training set,

and the data from December 18th 2012 to December 17th 2013 is used as testing

set for evaluating the submitted models. The time series of price, system loads,

and zonal loads are shown in Figure 4.345

6.1.1. Data Transformation

In many previous studies outlined in the reference survey [1], before fitting

the model to the data, the price is first log-transformed. The log-transformation

compresses the extreme values and makes the underlying noise more symmetric

and stable. The log-transformation is also applied to the zonal load and to the350

total load. When making predictions and calculating evaluation metrics, the

predicted value is transformed back to the exponential scale. The predictive
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Figure 4: Raw data of Zonal price, Zonal load, and Total load from the GEFCom2014 Dataset

distribution in the non-transformed space thus becomes a Log-Normal distribu-

tion, which has positive support with heavier right tail (upwards, to account for

the large spikes in the time series). We will discuss how this transformation is355

incorporated into our model in the Model Design section.

6.2. Evaluation Metrics

The performance of the model is evaluated by a rolling window procedure.

For every day in the test set, the preceding days are used to forecast the 24

hourly prices on that day. The number of preceding days used for training, or360

the calibration window, is unrestricted, with some submissions using only the

previous 13 days and some using up to 365 days. The prediction window is

rolled forward by one day until the prices for all 365 days in the test set are

predicted and scored by the evaluation metrics.

To evaluate the quality of a probabilistic forecast, the metrics should account365

for both the accuracy of the prediction and the width of the prediction intervals.
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Since the true distribution of the underlying data generating process is never

observed, we cannot directly compare the predictive distribution to the true

distribution. Instead, we use metrics that assess the properties of the predictive

distribution, such as quantile predictions and the prediction interval widths.370

Following the survey, we use Average Coverage Error (ACE), Pinball Loss, and

Winkler Loss to evaluate the performance of our model, because these metrics

accurately capture both point prediction accuracy and uncertainty around pre-

diction requiring only prediction intervals as input [1]. This also allows us to

compare our model to the state of the art and other submissions which only375

output prediction intervals as opposed to explicit predictive distributions dis-

tributions. The metrics are defined and summarised below.

6.2.1. Average Coverage Error (ACE)

The ACE is derived from the Unconditional Coverage (UC), which measures

the proportions of actual values captured by the prediction interval.380

It =

1 if Pt ∈ [L̂t, Ût]

0 if Pt /∈ [L̂t, Ût]

UC =
1

|T |
∑
t∈T

It

where Pt is the actual value at time t, and It is the indicator of whether the

prediction interval [L̂t, Ût] contains Pt. In other words, this metric asserts that

a X% prediction interval should contain X% of the observed points. Therefore,

ACE is the discrepancy between the percentage of points contained by the PI

and the confidence level of the PI, or UCα − α, where α is the confidence level385

of the PI. However, because the ACE can take on both negative and positive

values, we noted that an averaged ACE score can be close to zero even though

individual scores are not. Therefore, the average ACE score is only a measure

of reliability, or the unbiasedness of the prediction interval. In this paper we

will consider both the α = 50% PI ACE and the α = 90% PI ACE.390
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6.2.2. Pinball Loss

The Pinball loss is a metric on the sharpness of the predictive distribution,

which evaluates the precision of the prediction and how tightly the prediction

interval wraps around the true value. It is defined as follows:

Pinball(q, t) =

(1− q)(Q̂t(q)− Pt) for Pt < Q̂t(q)

(q)(Pt − Q̂t(q)) for Pt ≥ Q̂t(q)

Where Q̂t(q) is the predicted qth quantile at time t. The pinball loss is395

calculated for every t and averaged. The averaged pinball loss is then calculated

by averaging the pinball loss for 99 percentiles. If the prediction is close to the

true value and the prediction interval is narrow, then the Pinball loss will be

low.

6.2.3. Winkler Loss400

Similar to the Pinball loss, the Winkler Loss also measures the sharpness of

the predictive distribution.

Winkler(t, α) =


δt for Pt ∈ [L̂t, Ût]

δt + 2
α (L̂t − Pt) for Pt < L̂t

δt + 2
α (Pt − Ût) for Pt > Ût

(5)

where δ is the width of the interval = Ût − L̂t, and α is equal to 1 −
confidence. The second term in the Winkler score penalises prediction in-

tervals that fail to contain the actual values. The term α scales the penalty405

term by its confidence level. The Winkler loss is averaged across all time t, and

a lower Winkler loss indicates a more favourable prediction.

7. Model Design

In this section, we outline the design of our Gaussian Process model for

forecasting electricity price time series data. We recall that our model takes410
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as inputs time, zonal load, and total load, stored as a 3-dimensional matrix.

The prior mean of our GP is taken to be the zero function, and we begin

our exposition by describing our kernel design. We then perform a sanity check

that our model design makes sense through an analysis on model decomposition,

along with properly validating our model with a chosen cross-validation scheme.415

Finally, as outlined in the previous section, we describe how we transform the GP

back into the real (not log transformed) space to output our final Log-Normal

process over time and load on which we calculate our final test metrics.

7.1. Kernel Design

As discussed in Section 4, the kernel of a GP determines the properties of420

the functions that it generates, and allows us to encode assumptions about the

underlying data in the form of expert knowledge. After fitting, kernel design

also plays a large part in rendering our final GP model interpretable, as we

will see in the Model Decomposition section. Kernel design is therefore an

important step in Gaussian Process model design, and a crucial component of425

the design process where one can inject domain knowledge into the model. We

first introduce a few kernels that are useful in modelling electricity price data,

and then we explain how to use a composition of these kernels to build the

kernel for our model.

7.1.1. Squared Exponential Kernel430

The Squared Exponential Kernel, κEQ, is a kernel which encodes a high

degree of smoothness in the function space, and hence can be used to design a

GP which produces function samples that are smooth.

κEQ(xi, xj) = σ2exp

(
−‖xi − xj‖

2`2

)
(6)

7.1.2. Locally Periodic Kernel

A locally periodic kernel, κLPer, is a product of Squared Exponential (κEQ)435

and periodic kernel (κPer).
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Figure 5: Examples of Locally Period kernels with different periodic and squared exponential

lengthscales

κLPer = σ2exp

(
− 2 sin2(π(x− x′)/p)

`2per

)
exp

(
− (x− x′)2

`2eq

)
(7)

A GP with this kernel can generate functions that change their periodic

structure over time. The periodic component correlates points that are far

away from each other but still in the same phase of a cycle, whereas the squared

exponential component decorrelates them. The rate at which this structure440

changes is determined by the hyperparameter `eq. Smaller `eq corresponds to

faster changing periodic structures. This kernel is especially useful when mod-

elling electricity price time series, as they have repeating daily cycles that change

shape over time. Samples of LPER kernel with different `eq and `per are illus-

trated in Figure 5.445

Another important hyperparameter in this kernel is the period. We will

show how we can see the autocorrelation function as an empirical estimate of

our kernel, and use this to guide our choice of hyperparameters. Indeed, the au-

tocorrelation of a stochastic process Xt indexed at t is equal to the expectation

of the process at two different time points: RX(t1, t2) = E[Xt1Xt2 ]. For a sta-450

tionary stochastic process, the autocorrelation can be equivalently parametrized

by a lag quantity τ = t2 − t1 for all t1, t2 in the index set (as, by definition, the
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Figure 6: Top: Time Series plot, time in units of hours. Bottom: Autocorrelation plot for

different lags τ in units of hours.

autocorrelation of this process only depends on this lag quantity) and reduces

to: RX(τ) = E[Xt+τXt] for all t. We display the autocorrelation plot in Figure

6, where we plot the autocorrelation of a random two week sample of training455

data with respect to the lag parameter τ . From the analysis of the peaks and

troughs of the autocorrelation plot, we notice that peaks and troughs occur

at regular 12 and 24 hour intervals, indicating a 12 and 24 hour periodicity.

Specifically, we see a positive autocorrelation at lag multiples of 24 hours, and

negative autocorrelation at the remaining lag multiples of 12 hours. Addition-460

ally, we noticed the decay in autocorrelation as lag τ increases, which reaffirms

the aptness of the locally periodic kernel as oppose to just a periodic kernel.

Therefore, we incorporate the 12 and 24 hour locally periodic kernels with fixed

periods as the first component of the proposed composite kernel.
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Figure 7: Examples of Rational Quadratic kernels with different lengthscales and scale mixture

7.1.3. Rational Quadratic Kernel465

The Rational Quadratic kernel can be interpreted as the sum of many EQ

kernels of different lengthscales.

κRQ = σ2exp

(
1 +

(x− x′)2
2α`2

)−α
(8)

Similar to an SE kernel, the RQ kernel encodes smoothness in the function

space, but with the additional flexibility of having both local variations and

long term variations. The hyperparameter α, also known as the scale mixture,470

determines how much local variations (from the smaller lengthscales) contribute

to the overall variation. We use this kernel to model the non-periodic trends

within the data. For example, we can interpret the large lengthscale variation

as non-periodic weekly trend and the small lengthscale variation as non-periodic

daily trend. Samples of RQ kernel with different α and ` are illustrated in Figure475

7.

7.1.4. Exponential Kernel

The exponential kernel is also very similar to the SE kernel, but without

squaring the norm.
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κExp = σ2exp

(
− |x− x

′|
2`2

)
(9)

We use this kernel to model any remaining trends missed from the locally480

periodic kernels and RQ kernel.

7.1.5. Kernels for Load

Lastly, we use a two dimensional EQ kernel on the loads, with independent

lengthscales on each load. This is also known as the ARD kernel.

κARD(x,x′) = σ2exp

(
− 1

2
(x− x′)TΣ−1(x− x′)

)
(10)

Where Σ is diagonal. The correlation between the loads and the price is485

evident, so this kernel will be very important in the predictive performance.

7.1.6. Kernel Composition

Adding the kernels allows us stack their properties together. In addition

to the two locally periodic kernels with period 12 and 24, we have a Rational

Quadratic (RQ) kernel and an Exponential (Exp) kernel to model any local and490

non-periodic trends in the data. By having κLPer, κRQ, κExp, we have the

elements to build a GP that could model different periodic, non-periodic, short

term and mid/long term temporal trends in the electricity price data. Lastly,

the EQ kernel over load models the relationships between the price and the two

different loads, which we selected by observing the plots of total and zonal load495

against price that hint at a smooth underlying function. We combine all of

these kernels through the addition operation, which can be seen as establishing

a correlation between two time and load points if any of the component kernels

indicate a high correlation at those points. This gives us the following kernel:

κLPer24(t) + κLPer12(t) + κRQ(t) + κExp(t) + κEQ(load) (11)
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Figure 8: Iterative kernel design fits. The dotted line separates the training data from the

validation data. The fit of the training data and the predictive performance is measured by

log marginal likelihood(LML).
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To illustrate the effect each kernel component has on the composite kernel,500

we fit the data with cumulatively more complex kernels as shown in Figure

8. Starting with the κLPer24 kernel, the model is able to capture the daily

repeating patterns with slight variations in from cycle to cycle. However, its lack

of complexity is reflected by the large uncertainty in the training data fit, as well

as the inability to fit more dramatic daily variations. When κLPer12 is added,505

the uncertainty decreases significantly as a result of having more parameters

and thus greater flexibility. Nevertheless, the prediction intervals (uncertainty

to the right of dotted line) is still very wide, indicating poor extrapolation.

Adding κRQ and κExp reduces the uncertainty significantly, as they capture the

non-periodic trends and irregularities in the data. Finally, the SE kernel on510

load input proves to be an crucial addition to the composite kernel, especially

in prediction, as it significantly reduces the LML and the width of the prediction

interval.

In general, increasing the complexity of the model improves both the model

fit and the predictive performance. However, more complex kernel design may515

also lead to overfitting and improper uncertainty estimation. To verify the

model fitness and refine the model, we analyze the predictions by decomposing

each kernel’s contribution, and conduct cross-validation experiments on different

model designs.

7.2. Sanity Check for Model Design520

Since the kernel of the GP model is composed of additive parts, the poste-

rior distribution after conditioning can be decomposed into sums of individual

Gaussian Processes. This allows us to visualize the contribution of each kernel

component to the prediction and interpret the predictive components of our

model, highlighting the interpretability of the Gaussian Process as a predictive525

model. The mathematical formulation of kernel decomposition is outlined in

Appendix 10.2. We show how we can use this property to diagnose overfitting

and improve upon the proposed model.

In Figure 9, we observe the breakdown of the posterior distribution into each
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Figure 9: Decomposition of kernels into individual components. This plot shows that pos-

terior distribution of GPs with individual component of kernel conditioned on the observed

data(log-transformed). For the load kernels, the testing inputs are scattered among the train-

ing inputs. Hence, in prediction, prediction with this component GP is interpolation instead

of extrapolation.
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kernel component. We examine the shapes of individual posterior distributions530

and compare them when feeding training data and test data. The κLPer24

kernel models the daily cycle while the κLPer12 kernel models the more fine-

grained hourly oscillation. The κRQ kernel models the overall trend and the

κExp kernel accounts for any additional irregularities. Moreover, the κeq(load)

kernel takes in load data as input, which is not a time series, so the test inputs535

are interpolations. Furthermore, because the prediction posterior mean is the

sum of the posterior means from each kernel components, as illustrated in Figure

10, we can observe the signal contribution from each component. The κeq(load)

and κLPer24 kernels supply the main signal, while the other kernels supply fine

tuning information and periodicity.540

For forecasts, the conditional mean and variance of each component can be

interpreted as their respective contribution to the predictive mean and variance.

For example, the mean and variance of the two κLPer kernels hardly vary be-

tween training and validation data. This is consistent with the extrapolating

properties of periodic kernels, since far away points can be considered highly545
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correlated if they are close in position within their respective cycle. The EQ

kernel for load is also a main contributor for prediction, since the validation

inputs are scattered among the training inputs. This allows the kernel to in-

terpolate for predictions, which is a task that the EQ kernel excels at due to it

inducing a smooth function space. On the other hand, the uncertainty from κRQ550

kernel becomes greater the further the test data is away from the training data.

Although for training input it captures a clear trend with small variance, in

prediction the posterior slowly reverts to zero mean with large variance. Lastly,

we look at the κExp kernel. The κExp kernel demonstrates extreme behaviours

in both training data and testing data. In training it is very wiggly with small555

uncertainty, but it does not capture any recognizable trend. In prediction it

very quickly reverts to zero mean and large variance. This indicates that the

exponential kernel has minimal contribution to the prediction besides increas-

ing uncertainty. Therefore, we conclude that the inclusion of this kernel does

not improve predictive precision, and its contribution to the variance can be560

replaced by adding additional noise to the GP. Indeed, when we add a fixed

variance of σ2 = 0.005 on the GP, we observe the new decomposition in Figure

11, in which the exponential kernel is simply white noise.

7.3. Optimization and Cross Validation

The optimization of a GP model is done through maximizing the marginal565

likelihood (P (D|M)) with respect to the hyperparameters. We use ADAM

[25] as an optimizer for this objective function. While optimizing the marginal

likelihood allows us to determine the best-fitting hyperparemeters given a kernel,

to compare different kernel design and model design, we resort to conducting

cross-validation experiments.570

Since the data is a time series, the sequence must be maintained and thus

K-fold cross validation cannot be applied. Furthermore, since the training size

is fixed, we also cannot use a nested cross validation scheme. Instead we use

a bootstrap scheme to sample training and validation data, randomly sampling

a date for the start of the validation data and taking the preceding ntrain en-575
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Figure 11: Decomposition of GP model with fixed variance σ2 = 0.005. The exponential

kernel in this model provides no information to the model and was contributing to overfitting

and poor uncertainty calibration.
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tries as training data. We use the evaluation metrics defined in section 6.2 as

well as the Mean Square Error on the test set to evaluate performance. For

the experiments, we test 1) different combinations of kernels and 2) different

calibration windows. For kernel design, we found that the proposed composite

kernel with κexp replaced by noise achieves the best performance. Our final580

kernel and Gaussian Process model can then be summarized as follows:

κ = κLPer24(t) + κLPer12(t) + κRQ(t) + κEQ(load) (12)

y ∼ N
(
µ(X), κ(X,X) + σ2

ε I
)
, σ2

ε = 0.005 (13)

Where our prior mean µ is taken to be the zero function. For the calibration

window, we tested short (7 days), medium (14 days), long (28 days). We found

that a 14-day training window yields the best results.

7.4. Model Transformation585

While previous works have applied transformation to the data before fitting

the model, we describe the equivalent perspective of applying a transformation

to the model instead of the data. Our time series price data contains infrequent,

very large spikes in price which cause a visual asymmetry in the empirical data

distribution. Our use in applying a transformation to the regular GP model is to590

“squash” the high peaks so that we can fit a vanilla GP in this more symmetric

space. We thus continue the Bayesian paradigm by treating transformation

as another way to apply prior knowledge on the model. The model can be

expressed as follows:

y = ef(X), f(X) ∼ GP (µ,K) (14)

where y represents our observed data in the real space, and X our input595

space (in our case, time and load). That is, we place a GP prior over a latent

function f(X), and apply an exponential function to it. As derived in Appendix,
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in optimization, the marginal likelihood of 14 is equivalent to that of a GP with

y log-transformed. The equations for this closed form reverse transformation

are outlined in Appendix 10.3.600

8. Experiment Results

With a finalized model, we evaluate its performance on the test set, compare

the achieved metrics to the other submissions in the survey paper [1], and in-

spect the optimized hyperparameters to demonstrate the interpretability of our

Gaussian Process model, as mentioned in the introduction.605

8.1. Experiment Setup

For each day in the 365 days of the test set, the preceding 14 days are

used as input for the model. The hyperparameters of the model are optimized

for each window, and the predictive posterior distribution is used to calculate

evaluation metrics - ACE score with 50% confidence interval (ACE50), ACE610

score with 90% confidence interval (ACE90), Pinball Loss, Winkler loss with

50% confidence interval (Winkler 50), and Winkler loss with 90% confidence

interval (Winkler 90). The metrics for the 365 test days are then averaged to

calculate the final average metrics.

8.2. Inspection of Learned Hyperparameters615

Analyzing the optimized value of the hyperparameters (kernel parameters),

we can further infer the properties of the model. Namely, the lengthscales of the

EQ part of the locally periodic kernels reflect how quickly the locally-repeating

structure changes. Comparing the EQ lengthscales `eq between the κLPer12

kernel (` = 448 hours), and the κLPer24 kernel (` = 2475 hours), the latter has620

lengthscales more than 5 times larger than the former. This indicates that the

locally repeating patterns change more quickly for the κLPer12 kernel, matching

our intuition, as this kernel models the fine-grained variations of the price within

a day, which varies more frequently. Another easily interpretable parameter is

the variance of each kernel. As discussed previously, the variance is an indicator625
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of the kernel’s strength of signal relative to the other kernels. In this model, the

main signal is supplied by the κEQ(load) kernel (σ2 = 2.29), followed by the

κLPer24 kernel (σ2 = 0.093), then κRQ (σ2 = 0.0023) and κLPer12 (σ2 = 0.0006).

This indicates that the load information is very important for the prediction,

the most important of the features. It also indicates that the GP relies more630

heavily on the 24 hour periodicity than the 12 hour periodicity in the time series

data. Note that the hyperparameters converge to different values depending on

the training data, so the values provided are only representative examples from

a particular run. However, the scale and relative order of the variances is mostly

robust.635

Best Result GP Model

ACE 50% PI 0.08% -0.34%

ACE 90% PI -2.56% -4.25%

Average Pinball Loss 2.634 2.276

Winkler Score 50% PI 23.108 20.386

Winkler Score 90% PI 50.657 44.887

MSE - 141.78

Table 2: Performance Comparison across Evaluation Metrics. The best results come from the

survey paper [1], where mARX-B attains the best ACE50 and ACE90 scores, and QRA(3)

attains the best Pinball, Winkler50 and Winkler90 scores.

8.3. Performance Metrics

We compared the performance of the Gaussian Process model using our

kernel to the top results from the survey paper [1], summarized in Table 2.

The Gaussian Process Model achieves superior performance compared to the

the state-of-the-art in Pinball Loss, Winkler Score with 50% prediction interval,640

and Winkler Score with 90% prediction interval by considerable margins. In

reliability metrics (ACE50 and ACE90), the model is competitive, managing to

beat the next best scores in ACE50(-0.62% from ARX-B). A negative ACE score
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suggests underestimation of uncertainty. In this case, a better ACE50 score than

ACE90 score could also indicate that the underlying error distribution has fatter645

tails, which could be mitigated by more sophisticated data transformations such

as in [26].

9. Conclusion

In this work we have proposed the Gaussian Process (GP) as a solution to the

PEPF problem that is: a) simple and principled with calibrated uncertainties650

through the Bayesian framework, b) interpretable through its intuitive kernel

design and decomposition, c) flexible to include expert knowledge through ker-

nel design. We have demonstrated the above features of the GP model through

the use of a decision making toy example, a walkthrough of our design pro-

cedure, and finally through experiments on real data. Our constructed model655

outperformed the previous state-of-the-art with respect to most metrics on the

benchmark GEFCom2014 dataset (medium-term forecasting), outlined in [1],

and the model is publicly available at urlnotavailableyet. Future directions

of this work include experimentally veryfing model accuracy on short-term and

long-term benchmark datasets in the field. In regards to the latter, it could660

be fruitful to consider scalable GP approximations such as Sparse GPs [27, 28].

Another avenue of research could be to consider the modelling of power grids

in a holistic fashion, where multiple time series such as load and price are mod-

elled together with Gaussian Processes. Such dependent GPs could then be

combined into one more informed forecasting for price using techniques such665

as GPAR [29]. In the case of modelling and outputting multiple variables of

the grid, one could consider a multi-output GP which could learn correlations

between different input components such as load and price and output multiple

component predictions in a scalable way [30]. All in all, we find Gaussian Pro-

cesses to be a promising avenue not just for probabilistic EPF but probabilistic670

energy systems modelling as a whole.
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10. Appendix A: Gaussian Processes765

Our bold notation x indicates that x is a vector, non-bold f(x) indicates

that f is a scalar output function receiving a vector input, and scalar func-

tions receiving two vectors as input will follow the notation κ(x,x′) and denote

the Gram matrix with entries (i, j) taking on values κ(xi, xj). We proceed to

describe the Gaussian Process:770

f(x) ∼ GP(m(x), κ(x,x′)), (15)

where m(x) is the mean function:

m(x) = E[f(x)] (16)
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and κ(x,x′) is kernel or covariance function:

κ(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (17)

and where any collection of function values of size n follows a joint Gaussian

distribution with mean µ and covariance matrix K. These are expanded as

follows:775

[f(x1), f(x2), . . . , f(xn)]T ∼ N (µ,K), (18)

µ = [m(x1),m(x2), . . . ,m(xn)]T , (19)

Ki,j = κ(xi, xj). (20)

A Gaussian Process with a given mean function m and covariance function

κ is a prior that can generate functions. One can define the properties of the

desired function f(x) through the design of m and κ. The former is simply a

function that encodes the mean of the multivariate Gaussian distribution, and in

most cases is kept simple with a zero function or constant function. The latter,780

however, allows the user to more flexibly encode prior information about the

data that can be useful for prediction and inference. More intuitively, a kernel

can be seen as a similarity measure between two inputs. For example, consider

the Squared Exponential (EQ) kernel defined by the following expression.

κEQ(xi, xj) = σ2exp

(
−‖xi − xj‖

2l2

)
(21)

where σ2 and l are positive variance and lengthscale parameters respectively.785

The variance parameter encodes prior information about how wide the range of

values the functions can take. It can also be interpreted as the power of its un-

derlying signal (
∫
f(x)2dx), observed by noting that for x = x′, κEQ(x, x′) = σ2,

and hence the diagonals of our corresponding covariance matrix for our GP (the

Gram matrix of the covariance function) will be equal to σ2. The lengthscales790
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determines the smoothness of the functions. A larger l means that for two

inputs x, x′ that are further apart, the kernel still treats them as correlated

points, which results in smoother functions. Conversely, a smaller l corresponds

to smaller covariance between two points, which leads to more random fluctu-

ations. Figure 2 shows the functions generated by a GP prior with κEQ with795

varying variance and lengthscales.

Other kernel functions can encode different prior information about the gen-

erated functions. The Periodic Squared Exponential (Per) kernel can provide

prior information as to the periodicity of the underlying process and can be used

for modelling cyclical time series data:800

κPer(xi, xj) = σ2exp

(
−2 sin2(π|xi − xj |/p)

l2

)
(22)

This kernel can also be seen as applying a periodicity operator to the regular

EQ kernel (see [23]). Similarly, periodic kernels with different base structures

can be created by applying the same periodicity operator onto another station-

ary kernel such as the Matern 3/2 kernel [23]. Such a transformation endows the

kernel with a periodic structure, while still maintaining the underlying smooth-805

ness qualities of the function space.

The Matern 1/2 (MA) kernel encodes potential discontinuities in the sample

path of functions f sampled from our process and can be used for modelling

functions that are less smooth. Sample functions drawn from GPs with these

kernels are also shown in Figure 2.810

κMA(xi, xj) = σ2exp

(
−|xi − xj |

`2

)
(23)

This family of kernels, the Matern kernels, come in different flavours depend-

ing on the level of desired smoothness in the function space. Variants include

the Matern 3/2 kernel:
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κMA32(xi, xj) = σ2

(
1 +

√
3|xi − xj |
`2

)
exp

(
−
√

3|xi − xj |
`2

)
(24)

which induces a function space with smoother sample paths. Simpler covari-

ance functions also exist, such as the Linear kernel, with correlations between815

points decaying linearly in their separation distance:

L(xi, xj) = σ2
a + σ2

b (xi − c)(xj − c) (25)

where σ2
a and σ2

b are hyperparameters.

Moreover, the addition and multiplication of kernels results a valid kernel

(where a kernel is valid if it is a positive-definite function of its two inputs

[23]). Therefore, covariance functions can be combined through multiplication820

and addition to produce more complex covariance structures. The addition of

two kernels (κ1 and κ2) is analogous to an OR operation: two points t1 and t2

are considered highly correlated if they are highly correlated in either κ1 or κ2

(κ1(t1, t2) or κ2(t1, t2) is a large in magnitude). Conversely, the multiplication

of two kernels is analogous to an AND operation: two points t1 and t2 are825

considered highly correlated if they are highly correlated both in κ1 and κ2

(κ1(t1, t2) · κ2(t1, t2) is large in magnitude). With a compositional kernel, the

variance σ2 parameter of a each component kernel can also be interpreted as

the strength of its signal.

10.1. Inference with Gaussian Process830

To make predictions from input x∗ with Gaussian Processes given obser-

vations {(xi, yi)} assuming i.i.d additive Gaussian noise with variance σ2
n, the

prediction and observations are expressed as a joint distribution following the

GP prior,

 y

y∗

 ∼ N(µ,
K(X,X) + σ2

nI K(X,X∗)

K(X∗,X) K(X∗,X∗)

) (26)
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and from the joint distribution one can derive the conditional distribution,835

y∗|y,X,X∗ ∼ N (K(X∗,x)[K(X,X) + σ2
n]−1(y − µ),

K̄ = K(X∗,X∗)−K(X∗,X))
(
K(X,X) + σ2

n

)−1
K(X,X∗))

(27)

The model’s parameters(kernel parameters) can be tuned by optimizing the

marginal log likelihood :

logP (y|X, θ) = −1

2
yT (K̄ + σ2

nI)−1y − 1

2
log |K̄ + σ2

n| −
n

2
log 2π (28)

Where the first term can be interpreted as a data fit term, and the second

term as a complexity penalty (note the similarity with the entropy of a Gaussian

distribution: H = 1
2 ln |2πeK|). In the case where the kernel of the GP consists840

of multiple components, optimizing the log marginal likelihood automatically

selects the importance of each kernel component by its variance hyperparameter.

All kernel hyperparameters are optimized, including the likelihood variance σ2
n,

which encodes our estimate of Gaussian noise in the data generating process.

10.2. Decomposing Posterior Distribution into Kernel Components845

As described in the inference section above, the posterior mean and variance

of the GP is as follow,

µ̄ = K(X∗,x)[K(X,X) + σ2
n]−1(y − µ) (29)

K̄ = K(X∗,X∗)−K(X∗,X)
(
K(X,X) + σ2

n

)−1
K(X,X∗) (30)

Suppose our kernel κ is composed of D components, κ = κ1 + κ2 + . . . κD.

Then we can decompose the posterior mean and variance of the full GP into

the posterior mean variance of GPs with individual kernel component. We use850

µ̄d and K̄d to describe the GP with kernel component κd.
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µ̄d = Kd(X
∗,x)[K(X,X) + σ2

n]−1(y − µ) (31)

K̄d = Kd(X
∗,X∗)−Kd(X

∗,X)
(
K(X,X) + σ2

n

)−1
Kd(X,X

∗) (32)

With these expressions, we can see that µ̄ =
∑D

µ̄d. Therefore, the posterior

mean of the full model is the sum of the posterior means of the independent

models. However, the covariance matrix does not have the same linear structure,

hence it is harder to infer the relationship between the full covariance matrix855

and its components.

10.3. Log-Normal Gaussian Process

For a random variable Z following a multivariate Normal distribution, if

Y = eZ, then Y ∼ LogNormal(µ,K). Having trained a Gaussian Process over

log-transformed data, we can view it analogously as a multivariate Gaussian860

Z ∼ N (µ,K) over log-transformed data, and we can transform our model back

into the real space to obtain a Log-Normal process Y ∼ LogNormal(µ̃, K̃) over

our data, where:

µ̃j = eµi+
1
2Kii (33)

K̃ij = eµi+µj+
1
2 (Kii+Kjj)(eKij − 1) (34)

where i, j represent indices in the mean and covariance matrices of the dis-

tribution.865

The log marginal likelihood of a multivariate log normal distribution is sim-

ply the LML of a Gaussian transformed by log(Y) subtracting the sum of yi.

logP (y|X, θ) = −1

2
(log y − µ)TK−1(log y − µ)−

1

2
log |K| − n

2
log 2π −

∑
logyi

(35)
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Therefore, optimizing the LML for a log normal distribution is equivalent

to optimizing the LML for a normal distribution with log-transformed signal,

since the last term in 35 does not involve any parameters.870
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