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1 Introduction

Generalization bounds are one of a handful of tools we have for explaining the empirical perfor-
mance of learning algorithms like stochastic gradient descent (SGD). However, at present, there
are no generalization bounds for neural networks trained by SGD that are (known to be) nonva-
cuous (i.e., less than one) when applied to data sets and architectures used in practice. Despite
the logical disconnect, unsupported claims connecting vacuous generalization bounds to empiri-
cal performance abound. While the mathematical development of (potentially vacuous in practice)
generalization bounds is essential, premature attempts to explain practice may be slowing progress
towards understanding.

Several recent papers describe nonvacuous bounds for networks learned by SGD after compres-
sion and/or randomization. For example, Dziugaite and Roy [3] obtain nonvacuous generalization
bounds for stochastic neural networks on MNIST. These stochastic neural networks are defined by
adding Gaussian noise to the weights of the SGD solution, where the mean and variance of the noise
is optimized to minimize a PAC-Bayes generalization bound. The second example we are aware of
is due to Zhou et al. [15]. They combine the techniques of Dziugaite and Roy [3] and existing state-
of-the-art network compression schemes to produce nonvacuous bounds for stochastic versions of
the compressed networks. The method scales to IMAGENET, although the bounds are very loose.

PAC-Bayes bound optimization is a generalization of stochastic variational inference: a prior distri-
bution P on weights is fixed independently of the data and then a variational objective is optimized
over a family of posterior distributions. The variational objective is a linear combination of the
Q-average of the empirical risk and the KL divergence from Q to P .

What do these bounds imply about the generalization of the original network? Neyshabur et al. [9]
describe an approach to transfer bounds like those proposed by Dziugaite and Roy [3] back to the
original network. The approach is sensitive to the Lipschitz constant of the network learned by SGD,
which they bound by spectral norms of the weight matrices. (Cf. [1].) Unfortunately, the approach
produces empirically vacuous bounds.

This approach to controlling the risk of the SGD solution via a PAC-Bayes bound requires that the
posterior distribution, Q, be tightly concentrated around the weights learned by SGD. Empirically,
we have found that typical weights from optimized posterior distributions are quite different from
those of the SGD solution, even if the SGD solution itself is assigned relatively high density. The
prior is the culprit. Typical applications of PAC-Bayes bounds use generic priors. For example,
Dziugaite and Roy [3] choose P to be a scale mixture of Gaussians, centered at the randomly ini-
tialized weights used subsequently by SGD during training. (This choice is already a considerable
improvement over a prior centered at the origin, as the random weight initialization breaks symme-
tries that are often not reversed.) Since the prior distribution, P , is not itself concentrated around
the SGD solution, the KL(Q||P ) term in the PAC-Bayes bounds is vacuously large if Q is forced to



be concentrated near the SGD solution. An in variational inference, bound optimization causes the
posterior to shrink excessively towards the generic prior and away from the SGD solution.

Generic priors are not inherent to the PAC-Bayesian framework: every data-independent prior yields
a valid generalization bound, and so in the pursuit of obtaining tight and informative generalization
bounds, we must optimize the prior in order to remove a spurious shift of the distribution of the
penalty term away from zero. Indeed, fixing a learning rule S 7→ Q(S) for the posterior, Langford
[7] and Catoni [2] showed that the KL term is minimized in expectation by choosing P = E[Q(S)],
where the expectation is over the unknown distribution of the data, S. In this case, the expected value
of the KL term is precisely the mutual information between S and random weights w satisfying
P[w|S] = Q(S). While this mutual information is unknown, we see that every valid choice of a
prior P yields a KL term that is an upper bound in expectation. From this perspective, PAC-Bayes
bounds provide a tractable way to approach mutual-information bounds via clever priors.

In this paper, we extend a line of work on distribution-dependent priors initiated by Catoni [2]. (See
also [4, 5, 6, 10, 11, 12, 13].) Technically, we use an approach first presented by [12], however, in
the setting of deep learning, we must contend with the nonconvex learning problem. Our bounds
rely on SGD exhibiting a coarse type of stability: namely, the weights obtained from training on a
subset of the data are highly predictive of the weights obtained from the whole data set. We use this
property to devise data-dependent priors and then verify empirically that the resulting PAC-Bayes
bounds are much tighter.

2 Preliminaries

Consider neural network classifiers parameterized by weights w ∈ Rd. Let D denote the unknown
data distribution on the space Z of labeled examples. Let S = (z1, . . . , zm) denote m i.i.d. samples
from D. The goal of supervised learning is to identify weights w that minimize the risk RD(w) =
Ez∼D[`(w, z)], where ` : Rd × Z → [0, 1]. Since D is presumed unknown, the classifier is chosen
based on its empirical risk R̂S(w) = 1

m

∑m
i=1 `(w, z).

Our goal is to study stochastic gradient descent, which can be viewed abstractly as a map S 7→
A(S) : Zm → Rd. We are interested in its generalization error: RD(A(S)) − R̂S(A(S)). Our
approach will be to use PAC-Bayes theorems [8, 14].
Theorem 2.1 (Linear PAC-Bayes Bound; [2, 7]). Fix τ > 1/2. For every δ > 0, m ∈ N, D ∈
M1(Z), and P ∈M1(RD) with probability at least 1− δ, for every distribution Q ∈M1(RD),

RD(Q) ≤ 1

1− 1
2τ

(
R̂S(Q) +

τ

m

(
KL(Q||P ) + log

1

δ

))
. (1)

3 Data-dependent priors

Poor choice of a prior in the PAC-Bayes setting results in a loose generalization bound. The basic
idea introduced by Parrado-Hernández et al. [12] is to use a fraction k of the training data S to
choose a prior. However, predicting the learned weights for the full data set is nontrivial because the
empirical risk is nonconvex for neural networks, and SGD is nondeterministic.

Our approach is to use the dynamics of SGD itself to predict the weights of the final network, and to
couple SGD running on a fraction k of the training data with SGD running on the full data in order
to optimize the prior. While there are more sophisticated versions of this idea, we use the following
simple variant: For k ∈ (0, 1], let wp[k], for p ∈ R+, denote the weights learned by SGD running on
the first k fraction of the full data set after p/k epochs. (The index p is real-valued and so wp[k] is
piecewise constant in p, with jumps after each minibatch. Similarly k is a real-valued and so wp[k]
is piecewise constant in k, with jumps as additional data points are introduced.) By construction,
(wp[1])p∈[0,k] and (wp[k])p∈[0,k] have the same distribution for each k ∈ (0, 1]. Thus, there exists
a coupling of wp[k], for k ∈ (0, 1] and p ∈ R+ such that, for every k ∈ (0, 1], wp[1] = wp[k] for
p ∈ [0, k]. Let w0 denote the weights upon initialization, and, for p > 0, let wp = wp[1]. Then
wk = wk[k] represents the weights after a fraction k through the first epoch, which are necessarily
independent of the remaining (1 − k) fraction of the data. For any fixed k, we may use wk as a
prior mean, and then measure the generalization error of wT (or a Gibbs classifier surrogate Q) on
the basis of (1 − k)m data points. We can make a data-dependent choice of k via a union bound.
(Note that this coupling is trivial to generate, as it corresponds to a single run (wp) of SGD followed
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Figure 1: Test performance and PAC-Bayes bounds as a function of the fraction k of data used to
learn a prior over weights. The optimal performance at 0.5 is a test error bound of approximately
15%. In contrast, Zhou et al. [15] obtain a bound greater that 40%.

by simulations of additional epochs for k fractions of the data starting from wk, and proceeding
independently of wp for p > k.)

The following generalization bound is a simple extension of Theorem 2.1 to allow for data-
dependence [12]. For a fraction k and dataset S, let Sk denote the first k fraction of S.
Theorem 3.1. Fix λ > 1/2 and a finite subset K ⊂ [0, 1]. For all δ > 0, m ∈ N, D ∈M1(Z), with
probability at least 1− δ over S ∼ Dm, for all Q ∈M1(Rd), taking Pk =

∫
N (wk, λI)π(dλ),

RD(Q) ≤ 1

1− 1
2τ

inf
k∈K

(
R̂S\Sk

(Q) +
τ

(1− k)m
KL(Q||Pk) + log

|K|
δ

)
. (2)

Other choices of data-dependent priors include choosing Pk to be centered at an estimate of the
mean of wT [k] and using estimates of the covariance of wT [k] given wk in place of λI .

4 Experimental Results

We computed our bounds on fully connected networks learned by SGD by minimizing cross-
entropy loss on the full 10-class MNIST. We ran SGD until training error was 0.02. We chose
K = {0.0, 0.1, 0.25, 0.5, 0.75}. We used the PAC-Bayes bound optimization described in [3]. Both
priors and posteriors were Gaussians, leading to tractable KL divergence formula. Thus the KL
divergence with the scale mixture of Gaussian prior was upper bounded by a data-dependent choice
of the correct scale from a discrete set, and a penalty coming from a union bound over that set. The
bounds are presented in Fig. 1. Our bound is three times tighter than the bound produced by Zhou
et al. [15] using neural network compression schemes. We do not see a significant reduction in the
distance from the SGD solution to the posterior mean.
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