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Abstract— Robot swarms are homogeneous multi-robot sys-
tems that form collective behaviour from decentralized local
interactions. Swarms are a favorable choice for solving various
problems in robotics as they are robust and fault tolerant in na-
ture, the individual swarm agents themselves being cost effective
alternatives to the solution. Developing swarm technology aids
in large scale data collection and environmental exploration,
package delivery, warehouse management, military reconnais-
sance, and search and rescue. With the growing interest in
developing swarm systems, much researcher and developer time
is spent migrating, integrating, and coordinating these various
swarm solutions that become deprecated and isolated from the
community in frequent cycle. Furthermore, despite the afore-
mentioned swarm architectures provided insights into specific
design considerations, there still lacks a generalized architecture
that outlines a full swarm pipeline, and is modular enough in
design to be readily interchanged with new components as both
research and industry advance. We present an architecture for
developing full stack swarm systems. Such a system must allow
for easy design, deployment, interaction, and evaluation. Using
our proposed architecture, we then implemented a framework
titled: CMUSWARM, on the ROS platform using Gazebo with
irobot create for simulation. We then conduct an evaluation of
our architecture by comparing two simple swarm control-laws
within the framework.

I. INTRODUCTION

Robot swarms are homogeneous multi-robot systems that
form collective behaviour from decentralized local interac-
tions. Swarms are robust and fault tolerant in nature, with
individual swarm agents being inexpensive. As individual
mobile robots become more robust to real-world conditions
[1][6], there is growing interest in swarm robotics [2][5][7].
Developing swarm technology aids the data science industry
by allowing for large-scale data collection and environmental
exploration [9]. Swarms also show promise in object trans-
portation [10][8], military reconnaissance[15], and search
and rescue [13][14].

Multi-robot and swarm algorithms have been developed
over the years addressing problems such as navigation
[16][19], exploration[20], and coverage [18]. Middleware
platforms such as ROS, and Player [30] have an associated
community of developers and their software that enables
these algorithms to be deployed on a variety of robots
[12]; however there is a need for separate bench-marking
components in order to evaluate performance. Simulation
tools often come prepackaged with performance evaluation
tools, and have accelerated the community by allowing
multi-robot and swarm systems to be visualized without the
complexity and cost of real world experimentation. Platforms
include Argos [21], SwarmSimX [22], Menge [23], MAT-
LAB MRSim [26], and Stage [30]. Without middleware such

as ROS, these simulators do not allow for deploying swarm
algorithms on real robots. The TeleKyb framework merges
the ROS middleware with the SwarmSimX simulator using
MATLAB/Simulink to provide both the ability to operate a
swarm, and to evaluate swarm performance [25]; however
this framework is narrow in focus on particular UAVs, and
has quickly become deprecated as of ROS fuerte without
generalizing the design to other swarms. Recent development
of abstraction layers attempt to generalize from specific
swarm frameworks to more broad architectures of swarm sys-
tems. Current swarm architectures support interaction with a
swarm; but are constrained to centralized algorithms [24].
Other designs support both decentralized and centralized
swarms but are designed primarily around one aspect of a
swarm system such as communication [27], and don’t enable
interaction with the swarm, or evaluation of performance
[31].

This highlights a significant obstacle in the swarm robotics
community: the lack of a generalized design pattern (ar-
chitecture) for creating these swarm systems. Much devel-
oper and researcher time is thus spent following a trail of
deprecated software and migrating between separate eso-
teric components in hopes of creating hybrid software for
their particular use-case. Furthermore, when a framework is
showing great potential in the community [25], the sufficient
components in the given framework are not abstracted away
to highlight necessary components for any swarm system. As
a result, such contributions become isolated for one particular
application and deprecated in short time.

We present an architecture that provides a generalized
solution for developing full stack swarm systems. A full
stack swarm system must allow a developer to a) design of
a swarm behaviour library by integrating existing centralized
or decentralized algorithms, b) deploy swarm algorithms on
various real robots c) operate the swarm through human
control and d) evaluate algorithm performance through
various metrics. Using our proposed architecture, we then
implemented a framework titled: CMUSWARM, on the ROS
platform using Gazebo with irobot create for simulation.
In section II, we outline the architecture design, and then
describe our implementation on the ROS platform in section
III. Section IV demonstrates the usage of our Framework by
conducting an experimental evaluation of two decentralized
swarm algorithms We then discuss the various decisions of
our work and future research direction.
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II. ARCHITECTURE DESIGN

In this section we cover the architecture components and
design decisions. We design by keeping closely in mind the
use cases of operators and developers in the swarm robotics
community. An operator will be primarily concerned with
sending behaviour requests to a swarm and configuring such
behaviours, whereas a developer is most concerned with
integrating new algorithms and components seamlessly. As
such, modularity and simplicity are the fundamental design
philosophy.

A. High Level Overview

Fig. 1. High level overview of the architecture

The architecture consists of four layers (operator layer,
core layer, swarm layer, and robot layer). Both inter-layer
and intra-layer information is communicated asynchronously
through nodes using a distributed publisher subscriber pattern
[4]. This pattern favors the decentralized nature of a swarm in
that it provides scalable communication with low coupling.
It is important to note that while the swarm algorithms may
be decentralized, they are deployed from a centralized core
layer. Each layer is also assumed to have a local database
in which any node in the layer may access at runtime
to gather configuration parameters. The following sections
will further outline each layer, it’s configuration, and design
considerations.

B. Operator Layer

The operator layer allows for interaction with the system.
An external input device must act as an adapter to the
core layer by generating a behaviour request. A behaviour
request is a message consisting of a behaviour name, which
corresponds to the algorithm to deploy in the swarm system,
along with a list of robot ids, that identify the robots in
the swarm to control with this request. Further behaviour

specific information may be appended to the request through
key-value pairs at run-time. An example of an input device
is a joystick. Moving the joystick left may translate to
a behaviour request named move left, a list of all robot
ids in the swarm, and additional velocity information with
magnitude depending on the joysticks angle of offset. This
message will be sent to core layer and received by the main
controller.

C. Core Layer

The core layer receives behaviour requests and determines
how to toggle the requests upon the swarm.

1) Main Controller: The main controller is a node that
first receives the behaviour request. The behaviour name is
looked up in a local database for an associated record. If
the behaviour name is valid, then static information will be
appended to the request from its record. In the example of
a joystick generating a move left bc request, this will be
looked up by the main controller. The barrier certificates
portion of the request requires additional information such
as robot collision radius, which will be appended from the
database to the behaviour request. Each behaviour record in
the database must also specify if it is centralized or not. In
the case of a centralized behaviour, the updated behaviour
request will be remapped to a centralized algorithm node
on the topic behaviour name/control request. A decentralized
behavior request will be delegated to the request handler
directly, to be further spread out to the swarm.

2) Request Handler: The request handler receives be-
haviour requests from the main controller and publishes the
request to each robot listed in the request. Alternatively, a
centralized node will compute an explicit command for each
robot. The request handler will distribute each command to
a corresponding robot in the swarm. The request handler
also ensures that the swarm robots have disabled active
behaviours prior to toggling a new one. In the event that
multiple behaviours are requested rapidly, the request handler
will schedule them across some time interval.

D. Swarm Layer

The swarm layer is decentralized and thus refers to
each robot separately in the swarm. This layer contains
a node for each supported algorithm (ie behaviour) that
the robot can perform. When each robot in the swarm
performs the same desired algorithm, the global behaviour
emerges. Each robot falls into its own topic namespace,
and as such receives commands to its local node on
/{robot id}/{behaviour name}/control requests. Each algo-
rithm node in this layer will publish the computed velocities
to a robot controller, which further delegates to the robot
layer. In the case of a centralized algorithm, a direct com-
mand is propagated to this robot controller.

E. Robot Layer

The robot layer contains the drivers and other on-board
software for operating the swarm robot. In the case of a
simulation, the robot layer may redirect output commands
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Fig. 2. The process of gaining information about incoming messages to the main controller.

to a separate program which will then simulate the robot’s
trajectory.

F. Performance Evaluation

This performance component is spread across the robot,
swarm, and core layers of the architecture using a series of
what we denote as calculators, and summarizers. To outline
how performance metrics are calculated by propagating
information through the system, we will use the example
of a work summarizer.

1) Calculators: Each robot may contain a collection of
calculators, located in the swarm layer. Each calculator reads
information gathered during a trial. For example, a work
summarizer may use odometry to track the distance a robot
has travelled. The calculator will then publish results to a
corresponding summarizer. It is important to note that in a
real-world evaluation, the onboard sensors of a robot will be
inaccurate, and thus the calculators would publish inaccurate
data. We acknowledge this; and made this decision choice
despite it. During a real-world evaluation, if there exists some
supervisory process monitoring each robot in the swarm, it
may act as the calculator and communicate whatever precise
information it has captured. There exists inaccuracy in any
real-world sensor, thus we are not concerned with this matter
in our performance evaluation. Furthermore, tasking each
robot with providing performance calculations allows for ef-
fective debugging of a real-world system, as inconsistencies
may be found between measured, and predicted data.

2) Summarizers: Summarizer nodes are centralized in the
core layer and receive calculations from each active robot in
the swarm. The summarizer then evaluates this information
and organizes it. In the case of a work summarizer, it
would collect each robots indivdiual distance information,
and compute the sum and average to give insights about the
whole swarms travel. Each summarizer must have access
to termination conditions stored in the core layers local
database. These termination conditions ensure the summa-
rizer will either halt after a maximum execution time, or
when some other termination condition is met.

3) Performance Node: A single performance node sub-
scribes to each summarizer, and will save performance
summaries in a readable format. This may be in a database,
excel spreadsheet, etc. Furthermore, results can be mapped
to an output device and shown to the operator.

III. FRAMEWORK IMPLEMENTATION

We present a framework titled: CMUSWARM, which
implements the aforementioned architecture. The framework
was implemented on the ROS platform and tested with
both indigo and kinetic. ROS provides the publisher and
subscriber pattern required along with a parameter server
that acts as the database for the system. Gazebo was used
as a simulation platform with iRobot create sdf modelled
robots, however the framework may be used on real robots
supported by ROS compatible drivers.

Three performance metrics have been implemented.
work: track the overall distance travelled by all robots in
swarm
coverage: using the gridmap ros package [28], this will track
how much of the map was covered by the swarm. Each robot
covers the area created by a disk with the radius of the robot.
collisions: tracks the number of collisions a robot has with
nearby obstacles, assuming it can read in the environmental
information.
Experimental trials are run by having a supervisory process
fork a roslaunch instance of the framework. The launch file
is provided with arguments generated dynamically by the
supervisory program, which specifies where robots and ob-
stacles are located, as well as the termination conditions and
any other arguments required for an instance of the frame-
work. Once the framework is launched, a mock publisher
node will sent a behaviour request to activate the algorithm
in question. The performance is then evaluated by the work,
coverage, and collision calculators until their corresponding
summarizers terminate (either by termination condition, or
by max execution time). The results are saved and the
supervisory monitor will kill the child framework instance
and create a new one.

A. Algorithms and Dynamics

In order to demonstrate and verify the functionality of the
framework and implementation, a number of swarm control
algorithms were implemented and some benchmarked on the
machine. They are also used as a ground-truth comparison
for any future work we do using CMUswarm. The algorithms
currently implemented are:

• Move to goal
• Flocking
• Rendezvous
• Formation
• Voronoi static coverage
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Fig. 3. Our independent script implementation of common control laws
outside of the Framework. a) The move to goal behaviour with barrier
certificates, b) formation control with barrier certificates c) voronoi static
coverage

The details and guarantees for the algorithms are detailed
below.

The robot model used for all algorithms was the following:


ẋi

ẏi
θ̇i


 =



cos(θi) 0
sin(θi) 0

0 1



[
ui,v

ui,w

]

where v and w are the control linear and angular velocities,
respectively. Following the definition in [3], we represent the
ith robot by its position vector pi ∈ R2 and heading vector
in the direction of θi, bi ∈ R2 : ‖bi‖2 = 1.

Remark: The framework is not restricted to this robot
model, each algorithm is free to utilize any desired robot
model.

Let S represent the set of robots used in simulation.
We calculate the change in heading and update uv and uw

depending on the desired velocity pointed towards the target,
ṗ:

ui,v = Kv ∗ (bi)T ṗ

ui,w = Kw ∗ w

The algorithms differ in their calculation of ṗ and w. The
velocity relations are discretized into difference equations,
outputting a dv vector from an input of pk, k ≥ 0.

The robot dynamics are updated according to vk+1:

vk+1 = vk + dv

dθ = atan2(
vk+1[1]

vk+1[0]
)− θk

w = atan2(
sin(dθ)

cos(dθ)
)

b =

[
cos(θk)
sin(θk)

]

The linear and angular velocities are capped at a maxi-
mum:

uv = max(−Uvmax ,min(Uvmax , uv))

uw = max(−Uwmax ,min(Uwmax , uw))

The positions of the robots are then updated to follow the
dynamics:

pk+1 = pk +

[
uv cos θdt
uv sin θdt

]

θk+1 = wraptopi(θk + uwdt)

where the atan2 function is a four-quadrant inverse tan-
gent, and wraptopi is a function used to wrap angles in
radians to [−π, π].

It is important to note that every algorithm performed
inter-robot and obstacle collision avoidance in the form of
barrier certificates [11], a obstacle avoidance method chosen
due to its available collision avoidance guarantees on holo-
nomic agents and its minimally invasive nature which allows
for obstacle avoidance only when absolutely necessary. It is
achieved using a dynamic programming approach outlined
in [11]. Every algorithm presented therefore possesses an
underlying control in the form of barrier certificates that only
intervenes when it is absolutely necessary in order to avoid
a collision, and it does so while minimizing the difference
between the avoidance trajectory and the original intended
trajectory. Due to our non-holonomic robot model, the barrier
certificates algorithm still allowed for collisions to happen
in simulation, though less than in the no obstacle avoidance
case (see Figure 4).

1) Move to goal: The move to goal algorithm involves
a simple proportional controller that leads the robot towards
the desired position. The algorithm consists of a discrete loop
of the following differential equation:

ṗ = −Ki(p−E)

where d is the distance of the robot to the goal position
E, Ki > 0. The solution

p(t) = p(0)e−Kit +E

guarantees convergence to the desired point E since Ki

is positive definite. This is approximated using a difference
equation:

dv = −Ki(pi,k −E)

The dynamics are then updated according to the robot model.
An independent script implementation of this algorithm is
seen in Figure 3 a).
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2) Flocking: The flocking algorithm is inspired by the
known boids algorithm [17]e and [3], using the three steers
of separation, cohesion, and alignment. Specifically, the
following control laws were utilized for each steer:

Remark: The distance vector from agent i to agent j is
noted as d = pij = pj − pi.

Separation

dv = − d

‖d‖2

dθ = atan2(
dv[1]

dv[0]
)− θi

Alignment

dv = 0

dθ = θj − θi

Cohesion

dv = d

dθ = atan2(
dv[1]

dv[0]
)− θi

The robot positions are then updated according to the
previously stated dynamics, and each control law is activated
once d reaches certain physical thresholds of separation,
alignment, and cohesion defined by the user, termed
repulsion radius, alignment radius, attraction radius
in our implementation.

3) Rendezvous: This control law is described in [3] and
controls the robots such that they meet at a common point.
Define d as before: dij = pij = pj − pi. The following
update is provided to v in order to produce the rendezvous
behaviour:

dvi = dvi + dij , ∀j �= i ∈ S

vi is then normalized by ‖S‖ and the dynamics follow
from above.

4) Formation: In the formation control algorithm, each
agent is provided with a target position Ei, and they follow
a simple proportional controller towards this goal. Recall
obstacle avoidance and inter-robot collision avoidance are
handled using barrier certificates.

dv = −Ki(pi,k −Ei)

And the dynamics follow. An independent script imple-
mentation of this algorithm is displayed in Figure 3 b).

5) Voronoi Static Coverage: The voronoi static coverage
algorithm addresses the multi-robot problem of maximizing
static coverage over a certain area. The solution implemented
follows that of [Lloyd’s algorithm] where a controller moves
the robots to the centroid of their respective voronoi regions
(denoted as Ci). The voronoi regions were constructed for
each robot, and the following controller was then applied:

dv = −Ki(Ci − pi,k)

followed by the dynamics update detailed above. The
voronoi static coverage method outlined by Lloyd’s Algo-
rithm guarantees convergence to the optimal static coverage
configuration for holonomic robots. An independent script
implementation of this algorithm is displayed in Figure 3 c).

The algorithms were successfully implemented in our
framework and they cover different important areas of multi-
robot algorithms: coverage, formation, and navigation, all
with obstacle avoidance. It is shown in simulation that the
framework is well-adept for rapid porting and automated
benchmarking of such multi-robot algorithms. Figure 3
highlights a simple independent prototype implementation
of three of the above algorithms. We initially wrote the
controllers independently from the framework, as seen in
Figure 3, and we later integrated them into the framework
to evaluate the ease of integration.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance component of the framework
using gazebo ros on the ROS indigo and kinetic. Two naviga-
tion control laws, namely move to goal, and move to goal bc
are compared across four scenarios using 4, 8, 16, and 32
robots for 20 trials each totalling 640 trials. The purpose was
to highlight the use of the framework for evaluating swarm
algorithms.

A. Setup

The swarm is homogeneous and each robot represented
as an irobot create sdf file in gazebo. Obstacles are static
and modelled as 1x1x1 boxes. A swarm robot has a sensing
radius of 3 meters, as read from gazebo model positions, and
is assumed to have perfect sensing ability to obtain local
information. The robots max velocity is 4 meters/sec, and
maximum angular velocity is pi/4 radians. Four environment
scenarios are used, each a 20x20 meter world generated
in gazebo. The swarm robots are spawned in randomly
generated locations with some specified region, and must
navigate to a standard goal region within 1 minute.

Scenario 1: Empty World: This world is empty, with
robots spawning in the upper plane defined as R1 = (x, y)
such that x ∈ [1, 6], y ∈ [1, 19]. This is a minimal Scenario
to serve as easy comparison.

Scenario 2: Empty Dense World This world is also empty,
with a smaller spawning region for robots defined as R2 =
(x, y) such that x ∈ [1, 6], y ∈ [1, 6]. The goal region G
is a disk of radius 4 centered at (17, 17). This scenario
explores algorithm performance when swarm robots begin
within close proximity of each other. All other scenarios use
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the larger radius except this one. The reason, is that if an
algorithm struggles when initialized in a dense environment,
it wont matter what other obstacles are elsewhere, thus repli-
cating this density on any other world would be extraneous.

Scenario 3: Uniform World. Robots are spawned in the
region R3 = (x, y) such that x ∈ [1, 6], y ∈ [1, 19]. Obstacles
are spawned across the region O = (x, y) such that x ∈
[6, 16], y ∈ [1, 18]. The goal region G is a disk of radius 4
centered at (17, 17). This scenario evaluates basic collision
avoidance ability.

Scenario 4: Concave World. This world uses a fixed map
with no randomly generated obstacles. Robots are spawned
in the region R4 = (x, y) such that x ∈ [1, 6], y ∈ [1, 19].
The goal region G is a disk of radius 4 centered at (18, 18).
This scenario evaluates complex collision avoidance in a non-
convex environment.

Additional environments have been provided with the
framework, such as a corridor environment with a long
passageway. We dont evaluate proportional control laws on
such an environment, as the effort would be wasted. A
planning algorithm would be needed instead.

B. Comparison Results

The benchmarking capabilities of the framework al-
lowed for the sample comparison of move to goal and
move to goal bc algorithms (proportional controllers with
and without obstacle avoidance, respectively). Sample data
is displayed for the Concave Map and the Uniform Map
configurations (see Figures 4 and 5). The data confirm
our predictions that control algorithms that did not involve
Barrier Certificates (no avoidance) yielded a larger number
of robot collisions in simulation, both for the Concave and
Uniform Map scenarios. This test was performed in order
to evaluate the benchmarking capabilities of the framework,
confirmed by the output of logically coherent results.

Fig. 4. Data on collisions in Concave Map.

V. DISCUSSION AND CONCLUSION

We presented an architecture that provides a design pattern
for developing full stack swarm systems. This entails 4 pri-

Fig. 5. Data on collisions in Uniform Map.

mary layers: design (through building a swarm behaviour li-
brary), deployment (on various systems), interaction (through
operator control) and evaluation(through benchmarking) of
the swarm. Using our proposed architecture, we then im-
plemented a framework titled: CMUSWARM, on the ROS
platform using Gazebo with irobot create for simulation. We
then conduct an evaluation of our architecture by compar-
ing two simple swarm control-laws within the CMUSwarm
framework. Our work generalizes existing swarm architec-
tures by focusing not on one particular subsystem, or existing
framework; but rather the challenge of designing a full stack
system that is platform independent. Such design patterns
are required to allow for rapid integration and evaluation
of new methods and technologies. There remains much
additional work we will focus on in the future that will better
highlight the usage of our proposed architecture. Using our
implemented framework CMUSWARM, we wish to address
the following issues: a) Providing a wider span of algorithms,
input devices, and evaluation data for the framework. b)
Extending the architecture to support heterogeneous swarms
c) Performing human-swarm interaction experiments using
CMUSWARM d) Alternative extension of our framework
using a DDS vendor for publisher-subscriber architecture on
the ROS2 platform.

Our work in this paper presents the architecture and brief
overview, but the effectiveness of our design will best be
demonstrated through the proposed future work. We hope
that our proposed architecture will be used as a standard
for developing further swarm systems. By using a common
overarching design, the swarm research community will
become less decentralized and able to focus on moving
forward.
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